很高兴回答你的问题,如有帮助请采纳,有疑问请追问,谢谢
an=1^2+2^2+..+n^2
bn=(n+1)(2n+1)/an
To find:
(1) b1,b2,...,bn
(2) general term of bn
n^2= n(n+1) -n
= (1/3)[ n(n+1)(n+2) -(n-1)n(n+1) ] -n
an=1^2+2^2+..+n^2
= (1/3)n(n+1)(n+2) - n(n+1)/2
= (1/6)n(n+1)(2n+1)
bn = (n+1)(2n+1)/an
= 6/n
b1=6, b2=3,b3=2, b4=3/2, b5=6/5
【参考答案】
∵an=1²+2²+3²+……+n²=n(n+1)(2n+1)/6
∴bn=(n+1)(2n+1)/(2an)
=6(n+1)(2n+1)×1/[2n(n+1)(2n+1)]
=3/n
∴ b1=3,b2=3/2,b3=1,b4=3/4,b5=3/5
{bn}的通项公式是bn=3/n
1^2+2^2+3^2+……+n^2=n(n+1)(2n+1)/6
利用立方差公式
n^3-(n-1)^3=1*[n^2+(n-1)^2+n(n-1)]
=n^2+(n-1)^2+n^2-n
=2*n^2+(n-1)^2-n
2^3-1^3=2*2^2+1^2-2
3^3-2^3=2*3^2+2^2-3
4^3-3^3=2*4^2+3^2-4
......
n^3-(n-1)^3=2*n^2+(n-1)^2-n
各等式全相加
n^3-1^3=2*(2^2+3^2+...+n^2)+[1^2+2^2+...+(n-1)^2]-(2+3+4+...+n)
n^3-1=2*(1^2+2^2+3^2+...+n^2)-2+[1^2+2^2+...+(n-1)^2+n^2]-n^2-(2+3+4+...+n)
n^3-1=3*(1^2+2^2+3^2+...+n^2)-2-n^2-(1+2+3+...+n)+1
n^3-1=3(1^2+2^2+...+n^2)-1-n^2-n(n+1)/2
3(1^2+2^2+...+n^2)=n^3+n^2+n(n+1)/2=(n/2)(2n^2+2n+n+1)
=(n/2)(n+1)(2n+1)
1^2+2^2+3^2+...+n^2=n(n+1)(2n+1)/6
先化简An:An=n(n+1)(2n+1)/6。解法自己百度平方数列求和。后面答案就出来了
我想问一下这是几年级的