sin²a+2sinasinb+sin²b=1/2
令k=cosa+cosb
cos²a+2cosacosb+cos²b=k²
相加
因为sin²+cos²=1
所以2+2(cosacosb+sinasinb)=k²+1/2
cos(a-b)=cosacosb+sinasinb=(2k²-3)/4
-1<=cos(a-b)<=1
-1<=(2k²-3)/4<=1
-1/2<=k²<=7/2
即0<=k²<=7/2
所以-√14/2<=cosacosb<=√14/2 采纳
(sina+sinb)^2=sin²a+2sinasinb+sin²b=1/2
令cosa+cosb=k
cos²a+2cosacosb+cos²b=k²
两式子相加
得2+2(cosacosb+sinasinb)=k²+1/2
2+2cos(a-b)=k²+1/2
cos(a-b)=k²/2-3/4
-1≤cos(a-b)≤1
-1≤k²/2-3/4≤1
-1/2≤k²≤7/2
k²≥0
故0≤k²≤7/2
所以-√14/2≤cosa+cosb≤√14/2