(1)因为420+(-330)=90,750+(-660)=90,有一个结论:一个角的三角函数值等于余角的异名三角函数值,即函数名称要改变,这是诱导公式也可以得出的。我随便保留一个角哈,度我就不打出来了,所以原式=sin420 cos750+cos420 sin750=sin(420+750)=sin1170=sin(3x360+90)=sin90=1
(2)因为正切的最小正周期是兀,原式=tan(3x180+135)+tan(4x180+45)-tan(-330+2x180)+tan(-690+4x180)=tan135+tan45-tan30+tan30=0
(3)原式=sin(4兀+1/6兀)+cos(8兀+1/3兀)+tan(-25/4兀+7兀)=sin1/6兀+cos1/3兀+tan3/4兀=1/2+1/2+(-1)=0
1,Sin420°*Cos750°+Sin(-330°)*Cos(-660°)
=Sin(360+60)°Cos(720+30)°+Sin(-360+30)°*Cos(-720+60)°
=Sin60°Cos30°+Sin30°Cos60°=sin90=1
2,tan675°+tan765°-tan(-330°)+tan(-690°)
=tan(720-45)°+tan45°-tan(30°)+tan(30°)
=-tan45°+tan45°-tan(30°)+tan(30°)
=0
3,Sin25兀/6+Cos25兀/3+tan(-25兀/4)
=Sin兀/6+Cos兀/3+tan(3兀/4)
=1-1=0
1,Sin420°*Cos750°+Sin(-330°)*Cos(-660°)
=Sin(360+60)*Cos(2*360+30)-Sin(360-30)*Cos(2*360-60)
=Sin60*Cos30+Sin30*Cos60
=Sin(60+30)
=1
2,tan675°+tan765°-tan(-330°)+tan(-690°)
=tan(2*360-45)+tan(2*360+45)+tan(360-30)-tan(2*360-30)
=-tan45+tan45-tan30+tan30
=0
3,Sin25兀/6+Cos25兀/3+tan(-25兀/4)
=Sin(4π+π/6)+Cos(8π+π/3)-tan(6π+π/4)
=Sinπ/6+Cosπ/3--tanπ/4
=1/2+1/2-1
=0