数据分析师需要学习很多的技能,也正是因为这样,数据分析师的工资是十分乐观的。在大数据的火热发展中,数据分析师这个职业也越来越欢迎,很多人都想进入这个行业,这些人对于数据分析师需要学的东西都是比较关心的,而数据分析师需要学习的技能有很多,需要学习统计学、Excel、SQL、数据分析知识以及行业的知识等等。下面我们就详细地给大家介绍一下这些知识。
首先我们说一说Excel。如果想成为数据师,那么很有必要学会使用Excel这个工具。对于数据分析师来说,Excel是一个必备的技能,经过大量的实践发现,Excel是一个比较靠谱的工具,如果用Excel分析数据,就能够做好数据的分析,同时Excel操作也是比较简单的,不是程序员也能够正常的使用。现在有很多企业都在使用Excel这项工具进行去分析数据,所以,数据分析师必须要学会使用Excel。
然后我们说一说行业知识。对于数据分析师来说,业务的了解比数据方法论更重要。而且业务学习没有捷径,基本都靠不断的思考与不断的总结。这样才能够做好数据分析。
接着我们说一下SQL,其实现在很多人不知道sql是什么,在这里给大家描述一下,sql是所有数据库查询的语言,当然,sql非常容易入手。而数据库也是有很多的类型的,比如mysql、sqlserver、oracle等等,对于不同的数据库,sql语法会有所不同,但是总体上大同小异,只是细微处的差别。如果大家有数据库基础的话,那么只需要找些sql的题目做一做,这样也能够提到sql水平。
而数据分析思维是数据分析师需要注意的事情。如果作为一名数据分析师,需要很缜密的心思以及对数据很敏感的喜欢,这样才能够发现他人会遗漏的东西。有力这些还不够,我们还需要有一个数据分析的思维,那么怎么有一个数据分析的思维呢?一般来说,需要梳理分析思路,并搭建分析框架,把分析目的分解成若干个不同的分析要点,即清楚如何具体开展数据分析,需要从哪几个角度进行分析,采用哪些分析指标。同时,确保分析框架的体系化和逻辑性。
最后给大家介绍一下统计学。一名优秀的数据分析师还应该精通统计学,只有学会了统计学,才能够进行数据分析,数据分析是通过大量的数据进行挑选出有用的数据,这样才能够做好正确的分析。统计学的统计知识能够让我们多了一种角度去看待数据,这样能够看出不同的情况,为数据分析中提供了参考价值。如果你想成为一名出色的数据分析师,那么你就必须要会统计学。
通过上述的内容相信大家已经知道了数据分析师需要学会的技能了,大家在进行数据分析的时候多多注意上面内容的学习,这样才能够学好数据分析。最后祝愿大家早日学成数据分析。
学什么?
数据分析要学的内容大致分为6个板块,分别是:
Excel
精通Excel分析工具,掌握Excel经典函数,准确快速地完成数据清洗,利用Excel数据透视及可视化,可以透过现象看本质。
MySQL
理解MySQL数据库相关概念及存储原理,掌握SQL基本的增、删、改、查等语法掌握数据库性能调优策略,熟练使用SQL进行数据清洗与数据规范化。
BI商业智能工具
了解商业智能的核心价值,精通FineReport、FineBI,快速挖掘数据价值,掌握行业场景应用。
Python
学习Python基本编程语言知识,了解Python程序的计算机运行原理,能够使用Python编程处理工作中的重复性工作。 掌握网络数据抓取技术,Python数据库应用开发,实现Python数据可视化操作,提高数据收集和数据分析能力。 掌握Python数据分析处理基础库,具有应用Python语言解决数据分析中实际问题能力。
数据分析思维与理论
掌握微积分、线性代数、概率论、参数估计、假设检验、方差分析等数理统计基础 掌握基本的数学、统计学知识,学习数据运营方法论、机器学习夯实基础,提升数据敏感性,建立数据思维和数据素养。
掌握如何撰写行业分析报告和数据分析项目流程,能够独立完成数据分析项目。 掌握常见的数据运营方法如AARRR、漏斗、ABTset、描述性统计分析、相关分析、指数系统搭建等,培养利用多种数据分析方法解决实际工作问题能力。
机器学习
掌握机器学习常用经典算法原理及sklearn代码的实现、机器学习算法的选取、调优及模型训练、神经网络的特点及原理,增加个人核心竞争力,拥有能够用相关数据挖掘算法为解决实际问题能力;奠定人工智能算法入门基础。
数据分析师作为一个兴起不久的职业,目前高校还没有强关联的专业,基本上都是转行的居多,但一定要注意的就是:会工具不代表就可以做数据分析师。
很多人都在纠结自己没学过编程软件,不会Python怎么办,其实Python之类的只是一个工具而已,数据分析师对python的能力要求并不高,工作中用SQL和EXCEL相对多一些,都比较简单,前段时间Python比较火爆,是因为数据分析师这个职业突然火爆的原因,很多培训机构都想把python作为切入点来获客,现在已经冷淡下来了,所以不要被误导。
关键在于你通过数据分析发现问题、解决问题的思路上,所以商业逻辑和分析思维相对而言更重要一些。具体数据分析师需要的技能可以参考我之前的回答,总之在没有经验的时候,能去体验到真实的项目,做真实的数据,才能真的算是做过数据分析。
数据分析师需要学习统计学、编程能力、数据库、数据分析方法、数据分析工具等内容,还要熟练使用Excel,至少熟悉并精通一种数据挖掘工具和语言,具备撰写报告的能力,还要具备扎实的SQL基础。
1、数学知识
数学知识是数据分析师的基础知识。对于初级数据分析师,了解一些描述统计相关的基础内容,有一定的公式计算能力即可,了解常用统计模型算法则是加分。