对称轴:2x + π/6=kπ + π/2
2x=kπ + π/3
∴x=kπ/2 + π/6,(k∈Z)
对称中心:2x + π/6=kπ
2x=kπ - π/6
x=kπ/2 - π/12
则对称中心是(kπ/2 - π/12,0),(k∈Z)
f(x) = cos2wx + sqrt(3) sin2wx = 2 sin(2wx + pi/6) the period of this function is 2pi/(2w) = pi/w so w = 2 2. f(A) = 2sin(2wA+pi/6) = 1, 4A+pi/6 = 5pi/6 A = pi/6 when b=c, b+c is maximum b = sqrt(3)/sin15 = 2sqrt(3) / sqrt(2-sqrt(3))