y = (x^2-4x+3)/(2x^2-x-1) = (x-3)/(2x+1) = 1/2-7/(4x+2) ,
因为,7/(4x+2) ≠ 0 ,所以, y ≠ 1/2 ;
考察定义域: 2x^2-x-1 ≠ 0 ,解得:x ≠ -1/2 ,x ≠ 1 ;
将 x = -1/2 和 x = 1 分别代入 y = 1/2-7/(4x+2) ,得到的 y 值应舍去;
当 x = -1/2 时,y 不存在;
当 x = 1 时,y = -2/3 ;
因为,x ≠ 1 ,所以,y ≠ -2/3 ;
综上可得:这个函数的值域是 y ≠ -2/3 且 y ≠ 1/2
x的平方减4x加3=y(2乘x的平方减x减1)
(1-2y)x^2-(4-y)x+3+y=0
求delta:9y^2+12y+4大于等于0
y属于R
x不等于负二分之一是指分母不为零