设n为奇数,
1*2+2*3+3*4+...+n(n+1)=
=(1*2+2*3)+(3*4+4*5)+...+n(n+1)
=2(2^2+4^2+6^2+...(n-1)^2)+n(n+1)
=8(1^2+2^2+3^2+...+[(n-1)/2]^2)+n(n+1)
=8*[(n-1)/2][(n+1)/2]n/6+n(n+1)
=n(n+1)(n+2)/3
设n为偶数,
请你自己证明一下!
所以,
1*2+2*3+3*4+...+n(n+1)=n(n+1)(n+2)/3
我复制的
没有功劳也有苦劳啊
喂喂前面都是两项两项的后面怎么蹦出个三项的了。。。
后面应该没有(n+2)的吧