因为S=1+3+3²+3³+…+3的2005次方
那么3s=3+3²+3³+…+3的2006次方
3s-s=3+3²+3³+…+3的2006次方-(1+3+3²+3³+…+3的2005次方)
所以2s=3的2006次方-1
所以s=1/2×(3的2006次方-1)
解:
S =1+3+3²+3³+…+3^2005
3S = 3+3²+3³+....+3^2005+3^2006
(3S-S)=-1+0+0+.......+0+3^2006
2S=-1+3^2006
S=(3^2006-1)/2
解法一:
设
S=1+3+3的平方+3的立方+……+3的2005次方.......1
则
3S=3+362+363+364……+3^2006...........2
用2-1得:
2S=3^2006-1
所以
S=(3^2006-1)/2
解法二:
原式=(3^2006-1)/(3-1)=(3^2006-1)/2
S=1+3+3²+3³+…+3^2005
=1*(1-3^2006)/(1-3)
=(3^2006-1)/2