已知函数f(x)=2lnx-x2+ax(a∈R)(Ⅰ)当a=2时,求f(x)的图象在x=1处的切线方程;(Ⅱ)若函数g(x

2024-11-24 06:10:43
推荐回答(1个)
回答1:

(Ⅰ)当a=2时,f(x)=2lnx-x2+2x,
则f′(x)=

2
x
-2x+2,切点坐标为(1,1),
切线斜率k=f′(1)=2,
则函数f(x)的图象在x=1处的切线方程为y-1=2(x-1),
即y=2x-1;
(Ⅱ)g(x)=f(x)-ax+m=2lnx-x2+m,
则g′(x)=
2
x
-2x=
?2(x+1)(x?1)
x

∵x∈[
1
e
,e],
∴由g′(x)=0,得x=1,
1
e
<x<1时,g′(x)>0,此时函数单调递增,
当1<x<e时,g′(x)<0,此时函数单调递减,
故当x=1时,函数g(x)取得极大值g(1)=m-1,
g(
1
e
)=m-2-
1
e2
,g(e)=m+2-e2
g(e)-g(
1
e
)=4-e2+
1
e2
<0,
则g(e)<g(
1
e
),
∴g(x)=f(x)-ax+m在[
1
e
,e]上最小值为g(e),
要使g(x)=f(x)-ax+m在[
1
e
,e]上有两个零点,
则满足
g(1)=m?1>0
g(
1
e
)=m?2?
1
e2
≤0

解得1<m≤2+
1
e2

故实数m的取值范围是(1,2+
1
e2
]