公钥密码又称为双钥密码和非对称密码,是1976年由Daffy和Hellman在其“密码学新方向”一文中提出的,见划时代的文献:
W.Diffie and M.E.Hellman, New Directrions in Cryptography, IEEE Transaction on Information Theory, V.IT-22.No.6, Nov 1976, PP.644-654
单向陷门函数是满足下列条件的函数f:
(1)给定x,计算y=f(x)是容易的;
(2)给定y, 计算x使y=f(x)是困难的。
(所谓计算x=f-1(Y)困难是指计算上相当复杂,已无实际意义。)
(3)存在δ,已知δ 时,对给定的任何y,若相应的x存在,则计算x使y=f(x)是容易的。
注:1*. 仅满足(1)、(2)两条的称为单向函数;第(3)条称为陷门性,δ 称为陷门信息。
2*. 当用陷门函数f作为加密函数时,可将f公开,这相当于公开加密密钥。此时加密密钥便称为公开钥,记为Pk。 f函数的设计者将δ 保密,用作解密密钥,此时δ 称为秘密钥匙,记为Sk。由于加密函数时公开的,任何人都可以将信息x加密成y=f(x),然后送给函数的设计者(当然可以通过不安全信道传送);由于设计者拥有Sk,他自然可以解出x=f-1(y)。
3*.单向陷门函数的第(2)条性质表明窃听者由截获的密文y=f(x)推测x是不可行的。
Diffie和Hellman在其里程碑意义的文章中,虽然给出了密码的思想,但是没有给出真正意义上的公钥密码实例,也既没能找出一个真正带陷门的单向函数。然而,他们给出单向函数的实例,并且基于此提出Diffie-Hellman密钥交换算法。这个算法是基于有限域中计算离散对数的困难性问题之上的:设F为有限域,g∈ F是F的乘法群F*=F\{0}=
对Diffie-Hellman密钥交换协议描述:Alice和Bob协商好一个大素数p,和大的整数g,1
当Alice和Bob要进行保密通信时,他们可以按如下步骤来做:
(1)Alice送取大的随机数x,并计算
X=gx(mod P)
(2)Bob选取大的随机数x,并计算X = gx (mod P)
(3)Alice将X传送给Bob;Bob将X 传送给Alice。
(4)Alice计算K=(X )X(mod P);Bob计算K =(X) X (mod P),易见,K=K =g xx (mod P)。
由(4)知,Alice和Bob已获得了相同的秘密值K。双方以K作为加解密钥以传统对称密钥算法进行保密通信。
注:Diffie-Hellman密钥交换算法拥有美国和加拿大的专利。
3 RSA公钥算法
RSA公钥算法是由Rivest,Shamir和Adleman在1978年提出来的(见Communitions of the ACM. Vol.21.No.2. Feb. 1978, PP.120-126)该算法的数学基础是初等数论中的Euler(欧拉)定理,并建立在大整数因子的困难性之上。
将Z/(n)表示为 Zn,其中n=pq; p,q为素数且相异。若
Z*n{g∈ Zn|(g,n)=1},易见Z*n为 (n)阶的乘法群,且有 g (n)1(mod n),而 (n)=(p-1)(q-1).
RSA密码体制描述如下:
首先,明文空间P=密文空间C=Zn.(见P175).
A.密钥的生成
选择p,q,p,q为互异素数,计算n=p*q, (n)=(p-1)(q-1), 选择整数e使( (n),e)=1,1
B.加密 (用e,n)明文:M
密文:C 明文:M=Cd(mod n)
注:1*, 加密和解密时一对逆运算。
2*, 对于0
有M (q)+1=M+kcpq=M+kcn于是
有M (q)+1 M(mod n)
例子:若Bob选择了p=101和q=113,那么,n=11413, (n)=100×112=11200;然而11200=26×52×7,一个正整数e能用作加密指数,当且仅当e不能被2,5,7所整除(事实上,Bob不会分解φ(n),而且用辗转相除法(欧式算法)来求得e,使(e, φ(n)=1)。假设Bob选择了e=3533,那么用辗转相除法将求得:
d=e -1 6597(mod 11200), 于是Bob的解密密钥d=6597.
Bob在一个目录中公开n=11413和e=3533, 现假设Alice想发送明文9726给Bob,她计算:
97263533(mod 11413)=5761
且在一个信道上发送密文5761。当Bob接收到密文5761时,他用他的秘密解密指数(私钥)d=6597进行解密:57616597(mod 11413)=9726
注:RSA的安全性是基于加密函数ek(x)=xe(mod n)是一个单向函数,所以对的人来说求逆计算不可行。而Bob能解密的陷门是分解n=pq,知 (n)=(p-1)(q-1)。从而用欧氏算法解出解密私钥d.
4 RSA密码体制的实现
实现的步骤如下:Bob为实现者
(1)Bob寻找出两个大素数p和q
(2)Bob计算出n=pq和 (n)=(p-1)(q-1).
(3)Bob选择一个随机数e(0
(5)Bob在目录中公开n和e作为她的公开钥。
密码分析者攻击RSA体制的关键点在于如何分解n。若分
解成功使n=pq,则可以算出φ(n)=(p-1)(q-1),然后由公
开的e,解出秘密的d。(猜想:攻破RSA与分解n是多项式
等价的。然而,这个猜想至今没有给出可信的证明!!!)
于是要求:若使RSA安全,p与q必为足够大的素数,使
分析者没有办法在多项式时间内将n分解出来。建议选择
p和q大约是100位的十进制素数。 模n的长度要求至少是
512比特。EDI攻击标准使用的RSA算法中规定n的长度为
512至1024比特位之间,但必须是128的倍数。国际数字
签名标准ISO/IEC 9796中规定n的长度位512比特位。
为了抵抗现有的整数分解算法,对RSA模n的素因子
p和q还有如下要求:
(1)|p-q|很大,通常 p和q的长度相同;
(2)p-1 和q-1分别含有大素因子p1和q1
(3)P1-1和q1-1分别含有大素因子p2和q2
(4)p+1和q+1分别含有大素因子p3和q3
为了提高加密速度,通常取e为特定的小整数,如EDI国际标准中规定 e=216+1,ISO/IEC9796中甚至允许取e=3。这时加密速度一般比解密速度快10倍以上。 下面研究加解密算术运算,这个运算主要是模n的求幂运算。著名的“平方-和-乘法”方法将计算xc(mod n)的模乘法的数目缩小到至多为2l,这里的l是指数c的二进制表示比特数。若设n以二进制形式表示有k比特,即k=[log2n]+1。 由l≤ k,这样xc(mod n)能在o(k3)时间内完成。(注意,不难看到,乘法能在o(k2)时间内完成。)
平方-和-乘法算法:
指数c以二进制形式表示为:
c=
Xc=xc0×(x2)c1×…×(x2t-1)ct-1
预计算: x2=xx
x4=x22=x2x2
.
.
.
x2t-1 =x2t-2*x2t-2
Xc计算:把那些ci=1对应的x2i全部乘在一起,便得xc。至
多用了t-1次乘法。请参考书上的177页,给出计算
xc(mod n)算法程序:
A=xc c=c0+c12+..+ct-12t-1= [ct-1,....,c1,c0]2
5 RSA签名方案
签名的基本概念
传统签名(手写签名)的特征:
(1)一个签名是被签文件的物理部分;
(2)验证物理部分进行比较而达到确认的目的。(易伪造)
(3)不容易忠实地“copy”!!!
定义: (数字签名方案)一个签名方案是有签署算法与验
证算法两部分构成。可由五元关系组(P,A,K,S,V)来刻化:
(1)P是由一切可能消息(messages)所构成的有限集合;
(2)A是一切可能的签名的有限集合;
(3)k为有限密钥空间,是一些可能密钥的有限集合;
(4)任意k ∈K,有签署算法Sigk ∈ S且有对应的验证算法Verk∈V,对每一个
Sigk:p A 和Verk:P×A {真,假} 满足条件:任意x∈ P,y∈ A.有签名方案的一个签名:Ver(x,y)= {
注:1*.任意k∈K, 函数Sigk和Verk都为多项式时间函数。
2*.Verk为公开的函数,而Sigk为秘密函数。
3*.如果坏人(如Oscar)要伪造Bob的对X的签名,在计算上是不可能的。也即,给定x,仅有Bob能计算出签名y使得Verk(x,y)=真。
4*.一个签名方案不能是无条件安全的,有足够的时间,Oscar总能伪造Bob的签名。
RSA签名:n=pq,P=A=Zn,定义密钥集合K={(n,e,p,q,d)}|n=pq,d*e1(mod (n))}
注意:n和e为公钥;p,q,d为保密的(私钥)。对x∈P, Bob要对x签名,取k∈K。Sigk(x) xd(mod n)y(mod n)
于是
Verk(x,y)=真 xye(mod n)
(注意:e,n公开;可公开验证签名(x,y)对错!!也即是否为Bob的签署)
注:1*.任何一个人都可对某一个签署y计算x=ek(y),来伪造Bob对随机消息x的签名。
2*.签名消息的加密传递问题:假设Alice想把签了名的消息加密送给Bob,她按下述方式进行:对明文x,Alice计算对x的签名,y=SigAlice(x),然后用Bob的公开加密函数eBob,算出
Z=eBob(x,y) ,Alice 将Z传给Bob,Bob收到Z后,第一步解密,
dBob(Z)=dBobeBob(x,y)=(x,y)
然后检验
VerAlice(x,y)= 真
问题:若Alice首先对消息x进行加密,然后再签名,结果
如何呢?Y=SigAlice(eBob(x))
Alice 将(z,y)传给Bob,Bob先将z解密,获取x;然后用
VerAlice检验关于x的加密签名y。这个方法的一个潜在问
题是,如果Oscar获得了这对(z,y),他能用自己的签名来
替代Alice的签名
y=SigOscar(eBob(x))
(注意:Oscar能签名密文eBob(x),甚至他不知明文x也能做。Oscar传送(z,y )给Bob,Bob可能推断明文x来自Oscar。所以,至今人么还是推荐先签名后加密。)
6.EIGamal方案
EIGamal公钥密码体制是基于离散对数问题的。设P
至少是150位的十进制素数,p-1有大素因子。Zp为有限域,
若α为Zp中的本原元,有Zp* =<α>。若取β∈Zp*=Zp\{0},
如何算得一个唯一得整数a,(要求,0≤a≤ p-2),满足
αa=β(mod p)
将a记为a=logαβ
一般来说,求解a在计算上是难处理的。
Zp*中的Egamal公钥体制的描述:设明文空间为P=Zp*,密文空
间为C=Zp*×Zp*,定义密钥空间K={(p, α,a, β )|β=αa(mod p)}
公开钥为:p, α ,β
秘密钥(私钥):a
Alice 取一个秘密随机数k∈ Zp-1,对明文x加密
ek(x,k)=(y1,y2)
其中, y1=αk(mod p),y2=xβk(mod p)
Bob解密,
dk(y1,y2)=y2(y1α)-1(mod p)
注:1*.容易验证y2(y1α)-1=x(αa)k(αka)-1=x !!
2*.利用EIGamal加密算法可给出基于此的签名方案:
Alice 要对明文x进行签名,她首先取一个秘密随机数k作
为签名
Sigk(x,k)=( , )
其中 =αk(mod p), =(x-a )k-1(mod p-1)
对x, ∈Zp*和 ∈ Zp-1,定义Verk(x, ,)=真等价于
βα=αx(mod p)
要说明的是,如果正确地构造了这个签名,那么验证将
是成功的,因为
βα= αa αk (mod p)= αa+k (mod p)
由上面知道, =(x- a)k-1(mod p-1)可以推出
k=x- a(mod p-1)有a+kx(mod p)
所以 β = αx (mod p)
该签名方案已经被美国NIST(国家标准技术研究所)确定为签名标准(1985)。
有关RSA方面的内容,请访问网址:
www.RSAsecurity.com
淘淘VS跑跑 见习魔法师 二级(293) | 我的提问 | 我的回答 | 知识掌门人 | 我的消息(0/1) | 百度首页 | 退出
新闻 网页 贴吧 知道 MP3 图片 百科
帮助
百度知道 > 理工学科 > 数学 分类上升达人排行榜
用户名 动态 上周上升
我不是他舅 9055
474096872 6735
wxh240330 3085
jjj976431 2985
粉色ぉ回忆 2610
更多>>
订阅该问题
AV矩阵专业生产厂商
上海海视电子有限公司研制,生产,经营大型AV矩阵(512x64),中型AV矩阵(128x16),小型AV..
www.hivision.cc
pe多孔通讯管材设备
最专业的pe多孔通讯管材设备制造商
www.kai-de.com
VGA矩阵切换器-龙拓科技
龙拓科技是VGA矩阵切换器生产厂家,产品包括:VGA矩阵切换器;VGA加音频矩阵切换器;RGB..
www.lontuo.com
通讯电缆-天津电信电缆厂
技术力量雄厚,主要生产及检测设备均属国内先进水平产品有2400对以下矿用通讯电缆,通..
www.tztxdl.cn
模拟矩阵-时代雅视
北京时代雅视广播电视设备中心是专业从事广播电视中心设备开发,研制的高科技企业,主..
www.bjsdi.com
通讯继电器银触点-宁波昌晶稀贵公司
公司专业生产通讯继电器银触点,计银钉.异形接点银带.银触点,应用于4078.4100.23F.29..
www.nbchangjing.com
您想在自己的网站上展示百度“知道”上的问答吗?来获取免费代码吧!
--------------------------------------------------------------------------------
如要投诉或提出意见建议,请到
百度知道投诉吧反馈。
添加到搜藏待解决
想听大家对于一道密码设计的数学建模题
悬赏分:170 - 离问题结束还有 4 天 20 小时
题目:在保密通讯中,发送者向安全地发送信息给接受者其过程为 明文——〉加密——〉发送密文-->接收-->密文-->解密-->明文
试应用逆矩阵的理论建立密码设计数学建模.
要求:
1 建立逆矩阵密码设计数学建模.
2 对所绘明文进行加密,并解密验算.
3 对安全性进行评价.
明文1:1,2,3,4,5.....100
附明文1:1,2,3,4,5.....1000
提问者: dalongwangluo - 秀才 二级
回答 共 8 条
记得上学期我们线数课本的编者曾经讲过这个例子,好像是再设一个矩阵作为密钥,之后进行什么操作,具体的没记住,只能给你一点小提示了,祝好运~
回答者:yangerAE86 - 初入江湖 三级 4-24 14:51
http://www.securitycn.cn/img/uploadimg/20060401/CS-IS06.ppt
回答者:zz3699 - 助理 二级 4-24 23:23
公钥密码又称为双钥密码和非对称密码,是1976年由Daffy和Hellman在其“密码学新方向”一文中提出的,见划时代的文献:
W.Diffie and M.E.Hellman, New Directrions in Cryptography, IEEE Transaction on Information Theory, V.IT-22.No.6, Nov 1976, PP.644-654
单向陷门函数是满足下列条件的函数f:
(1)给定x,计算y=f(x)是容易的;
(2)给定y, 计算x使y=f(x)是困难的。
(所谓计算x=f-1(Y)困难是指计算上相当复杂,已无实际意义。)
(3)存在δ,已知δ 时,对给定的任何y,若相应的x存在,则计算x使y=f(x)是容易的。
注:1*. 仅满足(1)、(2)两条的称为单向函数;第(3)条称为陷门性,δ 称为陷门信息。
2*. 当用陷门函数f作为加密函数时,可将f公开,这相当于公开加密密钥。此时加密密钥便称为公开钥,记为Pk。 f函数的设计者将δ 保密,用作解密密钥,此时δ 称为秘密钥匙,记为Sk。由于加密函数时公开的,任何人都可以将信息x加密成y=f(x),然后送给函数的设计者(当然可以通过不安全信道传送);由于设计者拥有Sk,他自然可以解出x=f-1(y)。
3*.单向陷门函数的第(2)条性质表明窃听者由截获的密文y=f(x)推测x是不可行的。
Diffie和Hellman在其里程碑意义的文章中,虽然给出了密码的思想,但是没有给出真正意义上的公钥密码实例,也既没能找出一个真正带陷门的单向函数。然而,他们给出单向函数的实例,并且基于此提出Diffie-Hellman密钥交换算法。这个算法是基于有限域中计算离散对数的困难性问题之上的:设F为有限域,g∈ F是F的乘法群F*=F\{0}=
对Diffie-Hellman密钥交换协议描述:Alice和Bob协商好一个大素数p,和大的整数g,1
当Alice和Bob要进行保密通信时,他们可以按如下步骤来做:
(1)Alice送取大的随机数x,并计算
X=gx(mod P)
(2)Bob选取大的随机数x,并计算X = gx (mod P)
(3)Alice将X传送给Bob;Bob将X 传送给Alice。
(4)Alice计算K=(X )X(mod P);Bob计算K =(X) X (mod P),易见,K=K =g xx (mod P)。
由(4)知,Alice和Bob已获得了相同的秘密值K。双方以K作为加解密钥以传统对称密钥算法进行保密通信。
注:Diffie-Hellman密钥交换算法拥有美国和加拿大的专利。
3 RSA公钥算法
RSA公钥算法是由Rivest,Shamir和Adleman在1978年提出来的(见Communitions of the ACM. Vol.21.No.2. Feb. 1978, PP.120-126)该算法的数学基础是初等数论中的Euler(欧拉)定理,并建立在大整数因子的困难性之上。
将Z/(n)表示为 Zn,其中n=pq; p,q为素数且相异。若
Z*n{g∈ Zn|(g,n)=1},易见Z*n为 (n)阶的乘法群,且有 g (n)1(mod n),而 (n)=(p-1)(q-1).
RSA密码体制描述如下:
首先,明文空间P=密文空间C=Zn.(见P175).
A.密钥的生成
选择p,q,p,q为互异素数,计算n=p*q, (n)=(p-1)(q-1), 选择整数e使( (n),e)=1,1
B.加密 (用e,n) 明文:M
密文:C 明文:M=Cd(mod n)
注:1*, 加密和解密时一对逆运算。
2*, 对于0
有M (q)+1=M+kcpq=M+kcn于是
有M (q)+1 M(mod n)
例子:若Bob选择了p=101和q=113,那么,n=11413, (n)=100×112=11200;然而11200=26×52×7,一个正整数e能用作加密指数,当且仅当e不能被2,5,7所整除(事实上,Bob不会分解φ(n),而且用辗转相除法(欧式算法)来求得e,使(e, φ(n)=1)。假设Bob选择了e=3533,那么用辗转相除法将求得:
d=e -1 6597(mod 11200), 于是Bob的解密密钥d=6597.
Bob在一个目录中公开n=11413和e=3533, 现假设Alice想发送明文9726给Bob,她计算:
97263533(mod 11413)=5761
且在一个信道上发送密文5761。当Bob接收到密文5761时,他用他的秘密解密指数(私钥)d=6597进行解密:57616597(mod 11413)=9726
注:RSA的安全性是基于加密函数ek(x)=xe(mod n)是一个单向函数,所以对的人来说求逆计算不可行。而Bob能解密的陷门是分解n=pq,知 (n)=(p-1)(q-1)。从而用欧氏算法解出解密私钥d.
4 RSA密码体制的实现
实现的步骤如下:Bob为实现者
(1)Bob寻找出两个大素数p和q
(2)Bob计算出n=pq和 (n)=(p-1)(q-1).
(3)Bob选择一个随机数e(0
(5)Bob在目录中公开n和e作为她的公开钥。
密码分析者攻击RSA体制的关键点在于如何分解n。若分
解成功使n=pq,则可以算出φ(n)=(p-1)(q-1),然后由公
开的e,解出秘密的d。(猜想:攻破RSA与分解n是多项式
等价的。然而,这个猜想至今没有给出可信的证明!!!)
于是要求:若使RSA安全,p与q必为足够大的素数,使
分析者没有办法在多项式时间内将n分解出来。建议选择
p和q大约是100位的十进制素数。 模n的长度要求至少是
512比特。EDI攻击标准使用的RSA算法中规定n的长度为
512至1024比特位之间,但必须是128的倍数。国际数字
签名标准ISO/IEC 9796中规定n的长度位512比特位。
为了抵抗现有的整数分解算法,对RSA模n的素因子
p和q还有如下要求:
(1)|p-q|很大,通常 p和q的长度相同;
(2)p-1 和q-1分别含有大素因子p1和q1
(3)P1-1和q1-1分别含有大素因子p2和q2
(4)p+1和q+1分别含有大素因子p3和q3
为了提高加密速度,通常取e为特定的小整数,如EDI国际标准中规定 e=216+1,ISO/IEC9796中甚至允许取e=3。这时加密速度一般比解密速度快10倍以上。 下面研究加解密算术运算,这个运算主要是模n的求幂运算。著名的“平方-和-乘法”方法将计算xc(mod n)的模乘法的数目缩小到至多为2l,这里的l是指数c的二进制表示比特数。若设n以二进制形式表示有k比特,即k=[log2n]+1。 由l≤ k,这样xc(mod n)能在o(k3)时间内完成。(注意,不难看到,乘法能在o(k2)时间内完成。)
平方-和-乘法算法:
指数c以二进制形式表示为:
c=
Xc=xc0×(x2)c1×…×(x2t-1)ct-1
预计算: x2=xx
x4=x22=x2x2
.
.
.
x2t-1 =x2t-2*x2t-2
Xc计算:把那些ci=1对应的x2i全部乘在一起,便得xc。至
多用了t-1次乘法。请参考书上的177页,给出计算
xc(mod n)算法程序:
A=xc c=c0+c12+..+ct-12t-1= [ct-1,....,c1,c0]2
5 RSA签名方案
签名的基本概念
传统签名(手写签名)的特征:
(1)一个签名是被签文件的物理部分;
(2)验证物理部分进行比较而达到确认的目的。(易伪造)
(3)不容易忠实地“copy”!!!
定义: (数字签名方案)一个签名方案是有签署算法与验
证算法两部分构成。可由五元关系组(P,A,K,S,V)来刻化:
(1)P是由一切可能消息(messages)所构成的有限集合;
(2)A是一切可能的签名的有限集合;
(3)k为有限密钥空间,是一些可能密钥的有限集合;
(4)任意k ∈K,有签署算法Sigk ∈ S且有对应的验证算法Verk∈V,对每一个
Sigk:p A 和Verk:P×A {真,假} 满足条件:任意x∈ P,y∈ A.有签名方案的一个签名:Ver(x,y)= {
注:1*.任意k∈K, 函数Sigk和Verk都为多项式时间函数。
2*.Verk为公开的函数,而Sigk为秘密函数。
3*.如果坏人(如Oscar)要伪造Bob的对X的签名,在计算上是不可能的。也即,给定x,仅有Bob能计算出签名y使得Verk(x,y)=真。
4*.一个签名方案不能是无条件安全的,有足够的时间,Oscar总能伪造Bob的签名。
RSA签名:n=pq,P=A=Zn,定义密钥集合K={(n,e,p,q,d)}|n=pq,d*e1(mod (n))}
注意:n和e为公钥;p,q,d为保密的(私钥)。对x∈P, Bob要对x签名,取k∈K。Sigk(x) xd(mod n)y(mod n)
于是
Verk(x,y)=真 xye(mod n)
(注意:e,n公开;可公开验证签名(x,y)对错!!也即是否为Bob的签署)
注:1*.任何一个人都可对某一个签署y计算x=ek(y),来伪造Bob对随机消息x的签名。
2*.签名消息的加密传递问题:假设Alice想把签了名的消息加密送给Bob,她按下述方式进行:对明文x,Alice计算对x的签名,y=SigAlice(x),然后用Bob的公开加密函数eBob,算出
Z=eBob(x,y) ,Alice 将Z传给Bob,Bob收到Z后,第一步解密,
dBob(Z)=dBobeBob(x,y)=(x,y)
然后检验
VerAlice(x,y)= 真
问题:若Alice首先对消息x进行加密,然后再签名,结果
如何呢?Y=SigAlice(eBob(x))
Alice 将(z,y)传给Bob,Bob先将z解密,获取x;然后用
VerAlice检验关于x的加密签名y。这个方法的一个潜在问
题是,如果Oscar获得了这对(z,y),他能用自己的签名来
替代Alice的签名
y=SigOscar(eBob(x))
(注意:Oscar能签名密文eBob(x),甚至他不知明文x也能做。Oscar传送(z,y )给Bob,Bob可能推断明文x来自Oscar。所以,至今人么还是推荐先签名后加密。)
6.EIGamal方案
EIGamal公钥密码体制是基于离散对数问题的。设P
至少是150位的十进制素数,p-1有大素因子。Zp为有限域,
若α为Zp中的本原元,有Zp* =<α>。若取β∈Zp*=Zp\{0},
如何算得一个唯一得整数a,(要求,0≤a≤ p-2),满足
αa=β(mod p)
将a记为a=logαβ
一般来说,求解a在计算上是难处理的。
Zp*中的Egamal公钥体制的描述:设明文空间为P=Zp*,密文空
间为C=Zp*×Zp*,定义密钥空间K={(p, α,a, β )|β=αa(mod p)}
公开钥为:p, α ,β
秘密钥(私钥):a
Alice 取一个秘密随机数k∈ Zp-1,对明文x加密
ek(x,k)=(y1,y2)
其中, y1=αk(mod p),y2=xβk(mod p)
Bob解密,
dk(y1,y2)=y2(y1α)-1(mod p)
注:1*.容易验证y2(y1α)-1=x(αa)k(αka)-1=x !!
2*.利用EIGamal加密算法可给出基于此的签名方案:
Alice 要对明文x进行签名,她首先取一个秘密随机数k作
为签名
Sigk(x,k)=( , )
其中 =αk(mod p), =(x-a )k-1(mod p-1)
对x, ∈Zp*和 ∈ Zp-1,定义Verk(x, ,)=真等价于
βα=αx(mod p)
要说明的是,如果正确地构造了这个签名,那么验证将
是成功的,因为
βα= αa αk (mod p)= αa+k (mod p)
由上面知道, =(x- a)k-1(mod p-1)可以推出
k=x- a(mod p-1)有a+kx(mod p)
所以 β = αx (mod p)
该签名方案已经被美国NIST(国家标准技术研究所)确定为签名标准(1985)。
有关RSA方面的内容,请访问网址:
www.RSAsecurity.com
回答者:洛森 - 经理 四级 4-26 10:37
太难了
回答者:smile371 - 经理 四级 4-28 11:03
鄙视复制
回答者:其实我真是农民 - 千总 五级 4-28 14:49
密码在当今社会生活中的作用可以说十分巨大,除了众所周知的军事国防方面的应用外,现代金融、贸易、生产等无不在大规模使用密码.计算机网络的广泛应用,使人们对密码的依赖达到了新的高度,在千百万台计算机联结成的因特网上,用户的识别基本上是靠密码.密码被破译就会产生危及安全的极严重的后果.计算机“黑客”的作为,即为密码破译的一例,连美国国防部的计算机都未能幸免,可见密码编制的难度了.
�由大整数因数分解的困难,人们研制成功一种“不可破译”的密码:RSA体制密码(见本刊2000年第6期《大整数的因数分解问题》一文).RSA密码是一种公开密钥密码,说它“不可破译”是形容破译之难,不过的确至今尚没找到破译的理论工具.
�一般密码编制理论中,称要传递的原文为“明文”,经加密后实际传递的是密码构成的“密文”,收信方则将其解密,恢复为明文使其可理解,就完成了通信任务.这其中加密和解密要用通信双方约定的方法,这一方法就称为密钥.更一般地,人们首先给定一个加密算法,不太严格地说,可把这一算法视为函数,函数的值就是密钥,而解密算法可以说是加密算法的一个反函数,使用同一个密钥(原函数的值)可将密文惟一地译成明文.
�密码的关键就在于通信双方约定密钥而不被外界所知,外界对密码的破译也就指向密钥了.而且为了防止外界可能的破译,就应尽力使外人不可能积累在同一密钥下的许多密文,否则可用统计分析法等确定出密钥,世界战争史、外交史上有许多破译成功的例子.这样就经常变换密钥,重要的通信要每天一换甚至通一次信换一次.
�这么频繁换的密钥怎样送给对方?如果随其他信息(用无线电或网络)易于失密,每次派专人送又不可能,怎样解决这一问题呢?这就是RSA密码的长处了,它把密钥分成加密钥和解密钥.如A和B通信,A把加密钥公开送达B(可用明码电报或与上次通信同时),不怕外人知道,所以叫公开密钥,而解密钥留在自己处不送达B,B收到公开密钥后,用它加密要给A的信息,然后送回A(这也无须特别秘密),则A可用手中的解密密钥解密.
�外人没有解密密钥,就无从破译密码了,那么加密钥和解密钥就没有关系了吗?当然不是,否则就无法解密了.不过这种关系正是建立在大整数因数分解困难的基础上.换句话说,由公开密钥得出解密钥要进行一个充分大的整数的因数分解,你无法分解也就无法破译.
�具体的编码过程是,先找出两个不同的大素数p和q,再给定一个数r(一般是用计算机产生一个随机数或至少一个伪随机数,也可每次一换),使r与数(p-1)(p-1)互素,这三个数p、q、r就是解密密钥.
�再求一个数m,使(rm-1)能被(p-1)(q-1)整除.严格表述为:求m,使
�rm≡1(mod(p-1)(q-1)).
�由于r与(p-1)(q-1)互素,所以m是一定可求出来的(有数论定理保证).再求出数n=pq.m、n为加密密钥,即公开密钥.
�具体的加密方法为,设明文为x,可把x视为(或变为)一个大整数,设x<n,若x≥n,则将x表示为s进位的形式(s≤n,常用s=2t形式)的数,使其每一个数位上的数都小于n,再分数位进行编码.求一个数y(0≤y<n)使
y≡xm(modn)(可理解为,使(y-xm)能被n整除),y就是用m、n密钥加密后的密文.
�解密过程为,求
�z=yr(modn)(0≤z<n),
�在限定的条件(0≤y<n,0≤z<n)下有(可严格证明)
δ=x,
即得出明文.
�外人要想破译密码,就必须由m、n求出数r来.
�由此可见,要找到r必须由n得出p和q,即对n进行因数分解,如p、q取得相当大,即n相当大,由于分解困难,无法破译这一密码.
由于运用现代计算机已可分解100位左右数的因数,因此n要取得相当大,从而p、q也要取得相当大,比如每个数80位以上,再求积,这在技术上是可能的.
�是否还应考虑相应计算的复杂性和计算所需要的时间呢?当然有这方面的问题,现在通常用复合编码法解决,即用其他计算比较简单、耗时少的编码方法编码,而每次编码所采用的密钥用RSA密码来传递,这既加强了安全性,又加快了速度
回答者:xujunguo1 - 试用期 一级 5-2 17:15
首先,保证变换不失真,就是建立一对一映射变换矩阵M。即密文code加密为code*M,解密为M^(-1)*(code*M),满足不失真条件即为M^(-1)*(code*M)恒等code.
满足这个条件的矩阵很多,但是他们的安全度不同。即通过几条已知密文反求M的确定性。
越易求解M(破译),即安全度月底。
这道题其实就是简单的矩阵变换,不难。
回答者:gongon777 - 千总 四级 5-4 17:10
跟希尔密码 类似
回答者:眼睛很花 - 试用期 一级 5-6 21:00
我也来回答:
回答即可得2分,回答被采纳则获得悬赏分以及奖励20分。 积分规则
回答字数在10000字以内
参考资料:
如果您的回答是从其他地方引用,请表明出处。
匿名回答
©2008 Baidu
记得上学期我们线数课本的编者曾经讲过这个例子,好像是再设一个矩阵作为密钥,之后进行什么操作,具体的没记住,只能给你一点小提示了,祝好运~
首先,保证变换不失真,就是建立一对一映射变换矩阵M。即密文code加密为code*M,解密为M^(-1)*(code*M),满足不失真条件即为M^(-1)*(code*M)恒等code.
满足这个条件的矩阵很多,但是他们的安全度不同。即通过几条已知密文反求M的确定性。
越易求解M(破译),即安全度月底。
这道题其实就是简单的矩阵变换,不难。
http://www.securitycn.cn/img/uploadimg/20060401/CS-IS06.ppt