sinα=2⼀3, cosβ=-3⼀4 ,α∈(π⼀2,π) β∈(π,3π⼀2),求cos(α-β)的值

2024-12-31 17:50:09
推荐回答(2个)
回答1:

sinα=2/3 α∈(π/2,π) cosα=-根号[1-(2/3)^2]=-根号5/3
cosβ=-3/4 β∈(π,3π/2) sinβ=-根号【1-(-3/4)^2】=-根号7/4
cos(α-β)=cosα*cosβ+sinα*sinβ
=(-根号5/3)*(-3/4)+(2/3)*(-根号7/4)
=根号5/4-根号7/6

回答2:

因为sinα^2 + cosα^2 = 1 sinβ^2 + cosβ^2 = 1
所以 cosα^2 = 5/9 sinβ^2 = 7/16

因为α∈(π/2,π) β∈(π,3π/2)
所以 cosα = -√5/3 sinβ = -√7/4

cos(α-β)= cosαcosβ + sinαsinβ =(-√5/3)*(-3/4)+ 2/3*(-√7/4) = √5/4 -√7/6