解cosα=-4/5,α∈(π,3/2π),即sinα=-√1-(-4/5)²=-3/5tanβ=-1/3,β∈(π/2,π),即cos²β=1/(1+tan²β)=1/(1+(-1/3)²)=9/10即cosβ=-3√10/10即sinβ=√10/10即cos(α+β)=cos(α)cos(β)-sin(α)sin(β)=(-4/5)*(-3√10/10)-(-3/5)*√10/10=12√10/50+3√10/50=15√10/50=3√10/10