数列(n-10)(1⼀2)^n前n项和

2024-12-13 01:16:23
推荐回答(2个)
回答1:

(n-10)(1/2)ⁿ=n/2ⁿ -10×(1/2)ⁿ
Sn=(1/2+2/2²+...+n/2ⁿ) -10×(1/2)×(1-1/2ⁿ)/(1-1/2)
=(1/2+2/2²+...+n/2ⁿ) - 10 +10/2ⁿ
令Cn=1/2+2/2²+...+n/2ⁿ
则Cn/2=1/2²+2/2³+...+(n-1)/2ⁿ +n/2^(n+1)
Cn-Cn/2=Cn/2=1/2+1/2²+...+1/2ⁿ-n/2^(n+1)
=(1/2)(1-1/2ⁿ)/(1-1/2) -n/2^(n+1)
=1- 1/2ⁿ -n/2^(n+1)
Cn=2 -(n+2)/2ⁿ

Sn=Cn -10 +10/2ⁿ=2-(n+2)/2ⁿ -10 +10/2ⁿ=(8-n)/2ⁿ -8

本题用到了错位相减法。

回答2:

-8+(8-n)(1/2)^n