原式=1/(1-1/2)*(1-1/2)(1+1/2)(1+1/2^2)(1+1/2^4)(1+1/2^8)+1/2^15
=2(1-1/2^2)(1+1/2^2)(1+1/2^4)(1+1/2^8)+1/2^15
=2(1-1/2^4)(1+1/2^4)(1+1/2^8)+1/2^15
=2(1-1/2^8)(1+1/2^8)+1/2^15
=2(1-1/2^16)+1/2^15
=2-1/2^15+1/2^15
=2
(1+1/2)(1+1/2^2)(1+1/2^4)(1+1/2^8)+1/2^15
=2*(1-1/2)(1+1/2)(1+1/2^2)(1+1/2^4)(1+1/2^8)+1/2^15
=2*(1-1/2^2)(1+1/2^2)(1+1/2^4)(1+1/2^8)+1/2^15
=2*(1-1/2^4)(1+1/2^4)(1+1/2^8)+1/2^15
=2*(1-1/2^8)(1+1/2^8)+1/2^15
=2*(1-1/2^16)+1/2^15
=2-1/2^15+1/2^15
=2
1.5 *2 *3 *5 *7.5=337.5
(1-1/2)(1+1/2)(1+1/2^2)(1+1/2^4)(1+1/2^8)/(1-1/2)+1/2^15
=(1-1/2^16)/(1-1/2)+1/2^15
=2