求不定积分:∫ 1⼀(3+cosx) dx

2025-01-02 14:46:57
推荐回答(2个)
回答1:

令x=2u,则:u=x/2,dx=2du。
∴∫[1/(3+cosx)]dx
=2∫[1/(3+cos2u)]du
=2∫{1/[3+2(cosu)^2-1]}du
=2∫{1/[2+2(cosu)^2]}du
=∫{1/[1+(cosu)^2]du
=∫{1/[2(cosu)^2+(sinu)^2]}du
=∫{1/[2+(tanu)^2]}[1/(cosu)^2]du
=(1/2)∫{1/[1+(1/2)(tanu)^2]}d(tanu)
=(√2/2)∫{1/[1+(1/2)(tanu)^2]}d[(1/√2)tanu]
=(√2/2)arctan[(1/√2)tanu]+C
=(√2/2)arctan[(√2/2)tan(x/2)]+C

回答2:

解:x=2u,u=x/2,dx=2du。
因为∫[1/(3+cosx)]dx
所以 =
(√2/2)arctan[(√2/2)tan(x/2)]+C