不用他们那么麻烦!
积化和差:cosαcosβ=[cos(α+β)+cos(α-β)]/2
cos3xcos2x=[cos5x+cosx]/2
原式=1/10sin5x+1/2sinx+C
cos3xcos2x=1/2[cos5x+cosx]
所以,
∫cos3xcos2xdx=1/2*∫(cos5x+cosx)dx
=1/10*sin5x+1/2*sinx+C
C表示任意常数
∫cos3xcos2xdx
=(1/2)∫cos3xdsin2x
= (1/2)cos3xsin2x + (3/2)∫sin3xsin2xdx
=(1/2)cos3xsin2x - (3/4)∫sin3xdcos2x
=(1/2)cos3xsin2x - (3/4)sin3xcos2x +(9/4)∫cos3xcos2x dx
(-5/4)∫cos3xcos2xdx=(1/2)cos3xsin2x - (3/4)sin3xcos2x
∫cos3xcos2xdx=(-4/5)[(1/2)cos3xsin2x - (3/4)sin3xcos2x]+C
∫cos3xcos2xdx
=1/2∫(cos5x-cosx)dx
=1/10sin5x-1/2sinx+C