17世纪的一位法国数学家,提出了一个数学难题,使得后来的数学家一筹莫展,这个人就是费马(1601——1665)。
这道题是这样的:当n>2时,不定方程 x^n+y^n=z^n 没有正整数解。在数学上这称为“费马大定理”又称为“书边定理”,“费尔马大定理”。为了获得它的一个肯定的或者否定的证明,历史上几次悬赏征求答案,一代又一代最优秀的数学家都曾研究过,即使用现代的电子计算机也只能证明:当n小于等于4100万时,费马大定理是正确的。由于当时费马声称他已解决了这个问题,但是他没有公布结果,于是留下了这个数学难题中少有的千古之谜。
被公认执世界报纸牛耳地位的纽约时报于1993年6月24日在其一版头题刊登了一则有关数学难题得以解决的消息,那则消息的标题是『在陈年数学困局中,终于有人呼叫『我找到了」』。
五十年代日本数学家谷山丰首先提出一个有关椭圆曲线的猜想,后来由另一位数学家志村五郎加以发扬光大,当时没有人认为这个猜想与费马定理有任何关联。在八十年代德国数学家佛列将谷山丰的猜想与费马定理联系在一起,而安德鲁·怀尔斯所做的正是根据这个关联论证出一种形式的谷山丰猜想是正确的,进而推出费马最后定理也是正确的。
这个结论由威利斯在1993年的6月21日於美国剑桥大学牛顿数学研究所的研讨会正式发表,这个报告马上震惊整个数学界,就是数学门墙外的社会大众也寄以无限的关注。不过怀尔斯的证明马上被检验出有少许的瑕疵,於是怀尔斯与他的学生又花了十四个月的时间再加以修正。1994年9月19日他们终於交出完整无瑕的解答,数学界的梦魇终於结束。1997年6月,怀尔斯在德国哥庭根大学领取了佛尔夫斯克尔奖。当年的十万法克约为两百万美金,不过怀尔斯领到时,只值五万美金左右,但安德鲁·怀尔斯已经名列青史,永垂不朽了。
说明:
要证明费马最后定理是正确的
(即x^ n+ y^n = z^n 对n>=3 均无正整数解)
只需证 x^4+ y^4 = z^4 和x^p+ y^p = z^p (P为奇质数),都没有整数解。