求过点A=(-1,0,4),且与平面3X-4Y+Z-10=0平行,又与直线X+1=Y-3=Z⼀2相交的直线方程

别复制百度知道上的。还有灌水直接举报
2024-12-27 06:39:45
推荐回答(4个)
回答1:

解:因为 平行平面方程为 3x-4y+z + k = 0

带入点 得 k=-1

平行平面方程为 3x-4y+z=1

与直线相交后得到一点 为(15,19,32)

另点为(-1,0,4)

过2点直线为 (x+1)/16 = y/19 = (z-4)/32

答:求取的直线方程为 (x+1)/16 = y/19 = (z-4)/32。

扩展资料

已知直线上两点求直线的一般式方程:

已知直线上的两点P1(X1,Y1) P2(X2,Y2), P1 P2两点不重合。

对于AX+BY+C=0:

当x1=x2时,直线方程为x-x1=0

当y1=y2时,直线方程为y-y1=0

当x1≠x2,y1≠y2时,直线的斜率k=(y2-y1)/(x2-x1)

故直线方程为y-y1=(y2-y1)/(x2-x1)×(x-x1)

即x2y-x1y-x2y1+x1y1=(y2-y1)x-x1(y2-y1)

即(y2-y1)x-(x2-x1)y-x1(y2-y1)+(x2-x1)y1=0

即(y2-y1)x+(x1-x2)y+x2y1-x1y2=0 ①

可以发现,当x1=x2或y1=y2时,①式仍然成立。所以直线AX+BY+C=0的一般式方程就是:

A = Y2 - Y1

B = X1 - X2

C = X2*Y1 - X1*Y2

参考资料:直线方程_百度百科

回答2:

过 A 且与平面 3x-4y+z-10=0 平行的平面方程为 3(x+1)-4(y-0)+(z-4)=0 ,
解联立方程组 {3(x+1)-4(y-0)+(z-4)=0 ;x+1=y-3=z/2 可得交点 B(15,19,32),
所以 AB=(16,19,28),
所求直线方程为 (x+1)/16=y/19=(z-4)/28 。

回答3:

解:因为 平行平面方程为 3x-4y+z + k = 0
带入点 得 k=-1
平行平面方程为 3x-4y+z=1
与直线相交后得到一点 为(15,19,32)
另点为(-1,0,4)
过2点直线为 (x+1)/16 = y/19 = (z-4)/32
答:求取的直线方程为 (x+1)/16 = y/19 = (z-4)/32。
扩展资料:
已知直线上两点求直线的一般式方程:
已知直线上的两点P1(X1,Y1) P2(X2,Y2), P1 P2两点不重合。
对于AX+BY+C=0:
当x1=x2时,直线方程为x-x1=0
当y1=y2时,直线方程为y-y1=0
当x1≠x2,y1≠y2时,直线的斜率k=(y2-y1)/(x2-x1)
故直线方程为y-y1=(y2-y1)/(x2-x1)×(x-x1)
即x2y-x1y-x2y1+x1y1=(y2-y1)x-x1(y2-y1)
即(y2-y1)x-(x2-x1)y-x1(y2-y1)+(x2-x1)y1=0
即(y2-y1)x+(x1-x2)y+x2y1-x1y2=0 ①
可以发现,当x1=x2或y1=y2时,①式仍然成立。所以直线AX+BY+C=0的一般式方程就是:
A = Y2 - Y1
B = X1 - X2
C = X2*Y1 - X1*Y2

回答4:

简单计算一下,答案如图所示