用废气利用率这个概念不容易表达准确热量的利用,如果是废气利用率窑尾应该是100%进锅炉,窑头因篦冷机尾部排风没有完全关闭,总有部分排放,这在各厂都不一致,这与篦冷机废气处理系统设计选型有很大关系,尾风阀开度有5%~60%的都有。在标准规范中是以窑系统废气余热利用率表达,分为三级,国际先进水平≥70%,国内先进水平≥50%,国内基本水平≥30%。
100%利用啊,主要是锅炉的效率高低。
从评价方法的构成、热效率的物理意义及所举三个实例计算结果来看:
(1)对于同一条水泥窑,发电用热热源相同,当发电热力循环系统采用不同的主蒸汽参数时,参数越高热效率越高,相应地吨熟料余热发电量也越高。这说明:根据热源温度的不同,实现热量根据其温度进行梯级利用的原理对提高余热发电能力的重要性;
(2)对于同一条水泥窑,发电用热热源不相同但主蒸汽参数相同时,热源温度越高,吨熟料余热发电量也越高,但电站热效率越低。这说明:利用水泥窑生产本身可以回用的高温热量来提高水泥窑的发电量,虽然发电量可以提高,但节能效果确降低,因此是不能提倡的;
(3)对于同一条水泥窑,发电用热热源相同但物料所需烘干热源温度不同时,烘干所需热源温度越高,吨熟料余热发电量越低,电站热效率也越低。这说明:从吨熟料余热发电量、电站热效率两个方面来评价,物料烘干对发电能力的影响基本是相同的;
(4)对于不同水泥窑配套建设的余热电站,由于发电用热热源不相同、采用的余热发电技术不同,电站热效率只能说明用于发电的热量转换为电能的比例不同,但不能说明实际发电功率的不同。
评价方法的应用
如上所述,单一的“吨熟料余热发电量”或“热效率”都不能完整、准确的反映水泥窑纯低温余热发电技术的实际情况,本文提出的评价方法在于综合采用“吨熟料余热发电量”及“热效率”,其应用方法如下:
(1)在建设余热电站之前比较、确定余热电站技术方案时,单纯从节能角度来讲,对于不同的余热电站技术方案:如果用于发电的热源相同,则选择“热效率”高的方案(相应的“吨熟料余热发电量”也是高的);如果用于发电的热源不相同,仍应选择“热效率”高的方案(相应的“吨熟料余热发电量”不一定是高的),而如果“吨熟料余热发电量”同时也是高的,更应当选择此方案。
(2)对于已投产的余热电站,采用单一的“吨熟料余热发电量”或“热效率”来对余热电站及水泥窑自身进行综合考核都是准确、可靠的;
(3)对于已投产的不同水泥窑间的余热电站进行比较:如果某余热电站,不但“热效率”高,同时“吨熟料余热发电量”也高,则说明其余热电站的技术水平是高的;如果某余热电站“热效率”高“吨熟料余热发电量”低,则相对于另一套“热效率”低“吨熟料余热发电量”高的余热电站来讲,“热效率”高的余热电站的技术水平要高于“热效率”低的;
(4)对于“热效率”:由于水泥窑纯低温余热电站的热源温度较低,其“热效率”也就相对较低。对于带有五级预热器的新型干法窑来讲,纯低温余热电站的“热效率”一般在13~20%之间(大型火电站则在38~45%之间)。由于基数低,即使“热效率”只有微小的变化,对发电能力也将产生较大的影响,因此,水泥窑纯低温余热电站应当极力追求提高“热效率”,直至追求到提高百分之零点二,甚至是提高百分之零点一,这对水泥窑纯低温余热电站有重要意义。
水泥余热发电建设模式
传统模式
由设计单位提供技术方案和电站设计,企业自己安排建设和管理。设计单位只承担设计,工作量较大,利润较薄,一些设计单位不愿意提供这种模式的服务。由于目前余热发电建设是买方市场,这种服务模式的比例逐年下降。
EPC模式
即工程总承包模式。目前水泥余热发电建设采用EPC(总承包)模式比较普遍,市场占有率大约60%左右。采用这种模式主要原因是水泥余热发电市场比较火爆,技术供应商希望以工程总承包方式承接任务;另一方面水泥生产企业对水泥余热发电的设备采购、技术管理比较生疏,这方面正是技术供应商的优势。一般采用EPC模式时将土建工程拿出去,由业主自行招标。
BOT模式
是一种由出资方建设——运营——转交的模式,也是今后的发展方向。采用这种模式,水泥企业利用拥有废气资源优势,由电站的承建方全部投资进行建设和管理。企业可以解决资金短缺造成的窘迫,近期可以获得优惠电价,最终可以获得电站。投资方依靠资金、技术、配套、CDM、管理等方面的优势,可以有效规避投资风险和取得短期较好经济效益。这种模式目前应用不够普遍,大概占10%左右。这种模式双方合作的条款是比较灵活的,关键是条款的内容双方均能接受。
后两种模式总体经济性评价是双赢的,可以说以优势克服弱势,双方盈利。
余热发电是指利用生产过程中多余的热能转换为电能的技术。余热发电不仅节能,还有利于环境保护。余热发电的重要设备是余热锅炉。它利用废气、废液等工质中的热或可燃质作热源,生产蒸汽用于发电。由于工质温度不高,故锅炉体积大,耗用金属多。用于发电的余热主要有高温烟气余热,化学反应余热、废气、废液余热、低温余热,低于200℃等。
概况
余热是在一定经济技术条件下,在能源利用设备中没有被利用的能源,也就是多余、废弃的能源。它包括高温废气余热、冷却介质余热、废汽废水余热、高温产品和炉渣余热、化学反应余热、可燃废气废液和废料余热以及高压流体余压等七种。根据调查,各行业的余热总资源约占其燃料消耗总量的17%~67%,可回收利用的余热资源约为余热总资源的60%。
钢铁行业加热炉高温烟气回收发电技术当年可收回全部成本,热量利用率提高5-10%。
利用途径
余热的回收利用途径很多。一般说来,综合利用余热最好;其次是直接利用;第三是间接利用(产生蒸汽用来发电)。如钢铁工业:钢铁厂中的焦炉。目前我国大中型钢铁企业具有各种不同规格的大小焦炉50多座,除了上海宝钢的工业化水平达到了国际水平,其余厂家能耗水平都很高,大有潜力可挖。炼钢厂中的转炉烟气发电,发电系统,可配置发电量为3000Kw的电站80座。炼钢厂中的电熔炉,现如今全国有20多座,其中65吨级可发电量在5000Kw/座以上。
中国水泥窑余热发电技术经过近十余年的发展有了长足的进步,现已接近国际先进水平。诞生了各种各样的并能满足不同窑型要求的发电系统。 在未来相当长的时期内, 中国水泥窑余热发电技术的发展趋势主要集中于以下几个方面:
采用立式余热锅炉和补汽式汽轮发电机组的二级余热发电系统。 立式余热锅炉彻底解决了卧式余热锅炉漏风及炉内温度场实际分布与锅炉设计时所假想的温度完全不相同的问题, 可以大大提高锅炉蒸汽产量;篦冷机 或立式余热锅炉排出的200℃左右废气余热可以充分回收并用以发电。这样可使吨熟料余热发电量在熟料热耗不变的前提下提高到195千瓦小时以上。
使水泥窑综合能耗达到同规模预分解窑的能耗水平,而经济效益远高于预分解窑。
余热发电窑二级余热补燃发电系统除具有二级余热发电系统的优点外,还可解决水泥窑煤粉制备系统的运行安全及环保问题。同时,对于严重缺电地区或同时具有立窑、立波尔窑、湿法窑、干法回转窑等其它窑型的水泥厂,也可解决供电问题,并能够进一步提高经济效益。
为了克服带补燃锅炉的中低温余热发电系统存在的缺点,采用补汽式汽轮机组,充分回收200℃以下的废气余热, 同时补燃锅炉应当以煤矸石等劣质煤或垃圾为燃料,除节约优质煤外,还可为水泥生产提供原料,降低发电成本,进一步提高经济效益。
现如今,从事水泥工业技术工作的人员,致力于如何降低熟料热耗及水泥电耗的研究工作, 而从事余热发电技术工作的人员致力于如何提高余热利用率,提高余热发电量的研究工作。现如今还没有哪一个部门研究如何将水泥工艺技术与余热发电技术有机地结合起来,以寻求最低的水泥综合能耗及最佳的经济效益问题。笔者经过分析、研究认为,水泥工艺技术与余热发电技术最佳结合的方式应当为:缩减水泥窑预热器级数或者改变预热器废气及物料流程,使出预热器的废气温度能够达到550℃~650℃,这样余热发电系统可以取消补燃锅炉,采用余热发电窑的二级余热发电系统。这种结合方式,水泥熟料热耗虽然有所增加(对于五级预热器, 废气温度由320℃~350℃提高至550℃~650℃后,每千克熟料热耗预计增加1000~1200千焦), 但发电系统可以取消补燃锅炉而不存在由于补燃锅炉容量小、效率低的问题,同时能够保持余热锅炉生产高压高温蒸汽,使发电系统仍然具有较高的运行效率,吨熟料余热发电量可以提高90千瓦小时以上,水泥综合能耗将低于现如今的预分解窑水平,经济效益则显著提高。从中国的国情考虑,这种方式的水泥窑及发电系统,以其最低的投资、更低的综合能耗、更高的经济效益应当成为今后水泥工业发展的主要方向,这是水泥工业需要认真研究与探讨的重大课题。
现已投入生产的余热发电窑及小型预热器窑(包括立筒预热器窑) 流态化分解炉(或烟道式分解炉)加1~2级悬浮预热器加余热发电窑二级余热发电技术,是今后对已投入生产的余热发电窑及小型预热器窑进行技术改造的主要模式。这项综合技术,除了水泥窑的熟料产量可以增加20%~100%以外, 每吨水泥\熟料发电量也可达110~195千瓦小时,收到增产、降耗、 提高经济效益的三重效果,同时改造投资也大大低于其它模式。
根据立窑厂的生产能力及资金条件,第一步,先利用余热发电窑(中空窑)加二级余热发电技术取代立窑。 如某立窑厂有3条8.8万吨的生产线,可停产2台立窑, 建一条直径3.6米×74 米中空窑及一套4500千瓦补汽式余热发电系统,这一步投资约需3600~3800万元。其次,利用流态化分解炉加1~2级悬浮预热器技术, 再对余热发电窑进行技术改造, 即对于上例所述立窑厂,停产第三台立窑,并对已建成的直径3.6米×74米中空窑加装流态化分解炉及1~2级悬浮预热器,同时对余热锅炉进行局部改造,这一步的投资约需800~1000万元。上述两步改造工作完成后,以总投资4500~5000万元的代价,将原立窑厂升级换代为预分解窑厂,并使熟料总产量维持在原有3台立窑总和的水平,在每吨标准煤到厂价不高于180元的条件下,水泥生产成本可降至95元以下。
随着余热发电的技术日益成熟,国家对能源的重视,对节能减排的扶持,越来越多的可利用余热的企业都意识到了余热发电所带来的效益。对发展余热发电项目持积极态度。但限于项目投资资金大,技术复杂,致使很多企业想上项目可最终因为资金技术的原因没有上成。鉴于这种情况 现如今国内涌现出不少专业的节能服务公司采用EMC(合同能源管理)模式来投资余热发电,即由节能公司投资资金和采购所需设备,技术来为企业建设余热发电项目,项目产生效益后在效益里回收投资的模式。这种模式即解决了企业资金不足技术不足的缺点,也使的平时废弃的烟气,尾气,余热得到合理的利用。同时也使得节能公司的资金得到合理的运转,这种双赢模式的合作在余热发电项目上越来越受到欢迎。