已知X2-3x+1=0,求下列各式的值:(1)x2+1⼀x2;(2)x3+1⼀x3;(3)x5+1⼀x5

2024-11-23 22:58:07
推荐回答(2个)
回答1:

X2-3x+1=0
x-3+1/x=0 两边除以x
∴x+1/x=3

x²+1/x²=(x+1/x)²-2=3²-2=7
x³+1/x³=(x+1/x)(x²-1+1/x²)=3×6=18

(x²+1/x²)(x³+1/x³)=x5+1/x+x+1/x5
∴7×18=x5+3+1/x5
∴x5+1/x5=123

回答2:

X2-3x+1=0
x-3+1/x=0 两边除以x
∴x+1/x=3

x²+1/x²=(x+1/x)²-2=3²-2=7
x³+1/x³=(x+1/x)(x²-1+1/x²)=3×6=18

(x²+1/x²)(x³+1/x³)=x5+1/x+x+1/x5
∴7×18=x5+3+1/x5
∴x5+1/x5=123