一、幻方应用于哲理思想的研究。
在数学中,幻方蕴涵的哲理思想是最为丰富的。《易经》 是一本哲学书,它几乎影响了国内外的各种哲学思想。而易学家们通过多方面研究发现,易 学来源于河图洛书,而洛书就是三阶幻方。幻方的布局规律、构造原理蕴涵着一种概括天地 万物的生存结构,是说明宇宙产生和发展的数学模型。拙文《四阶完美幻方的易理思想》、 《五阶幻方与易数系统》,是对高阶幻方蕴含的哲理思想的进一步探讨,有兴趣的读者可 参阅《周易研究》1999年第1期和2000年第1期。?
二、幻方应用于美术设计
幻方可大量应用于美术设计,西方建筑学家勃拉东发现幻方的对称性相当丰富,它采用幻方组成许多美丽的图案,他把图案中的那些方阵内的线条称为“魔线”,并应用于轻工业品、封面包装设计中,德国著名版画家A·度勒的作品《忧郁症》中,因有一个能指明制作年代的幻方而闻名于世,艺术美与理性美的和谐组合,往往成为流芳千古的佳作。关于“魔线”图,日本幻方专家阿部乐方也做过许多工作,我国河南安阳一位教师姬广忠,曾研究出各种魔线图,奉献给了中央工艺美术学院。北京丁宝训在《幻方专辑》 登载了17幅“魔线图”,都十分漂亮。幻方中数学布局十分对称均衡,又有丰富的变化,因而 将其数字按序联起来,可形成一幅幅奇特的“魔方阵构造图”,经彩色处理可获得十分漂亮的美术图案,这种图案在表现出多样的对称美的同时,又有幻方原理的理性规律,因此耐人寻味,堪称天斧之工。
三、幻方的美学价值。
数学是美的,幻方更美。幻方是数学按着一种规律布局成的一种体系 ,每个幻方不仅是一个智力成就,而且还是一个艺术佳品,都以整齐划一,均衡对称、和谐 统一的特性,迸发出耀人的数学美的光辉,具有很高的美学价值。在数学美学当中,把幻方 中的美学价值推为至上,由于数学中的各个内容均同数字有密切联系,因而幻方这种美的结 构均可渗透在各种数学知识当中,显示出多样的妙趣来,使我们在幻方的欣赏中了解数学知 识的许多奥妙。?
四、幻方的智力开发功能。幻方由于比较简单,容易入门,很快能引起青少年的探讨兴趣。 可以说幻方在智力开发方面已产生十分重要的作用。挖掘中国数学史,我们便会看到,趣味 数学、计算工具、棋类游戏都与幻方有着内在的联系。在算法的历史上,先有九宫算,后有 太乙算、算盘、电子计算机,在游戏的发展史上,最先有重排九宫,后有象棋、围棋、华容 道游戏等。
幻方又称为魔方,方阵或厅平方,它最早起源于我国。宋代数学家杨辉称之为纵横图。
所谓纵横图,它是由1到n 2,这n 2个自然数按照一珲的规律排列成N行、N列的一个方阵。它具有一种厅妙的性质,在各种几何形状的表上排列适当的数字,如果对这些数字进行简单的逻辑运算时,不论采取哪一条路线,最后得到的和或积都是完全相同的。关于幻方的起源,我国有“河图”和“洛书”之说。相传在远古时期,伏羲氏取得天下,把国家治理得井井有条,感动了上花于是黄河中跃出一匹龙马,背上驮着一张图,反作为礼物献给他,这就是“河图”,了是最早的幻方伏羲氏赁借着“河图”而演绎出了八卦,后来大禹治洪水时,咯水中浮出一只大乌龟,它的背上有图有字,人们称之为“洛书”。“洛书”所画的衅中共有黑、白圆圈45个。把这些连在一起的小圆和数目表示出来,得到九个。这九个数就可以组成一个纵横图,人们把由九个数3行3列的幻方称为3阶幻方,除此之外,还有4阶、5阶...
后来,人们经过研究,得出计算任意阶数幻方的各行、各列、各条对角线上所有数的和的公式为:
Nn=1/2n(n 2+1)
其中n为幻方的阶数,所求的数为Nn.
幻方最早记载于我国公元前500年的春秋时期《大戴礼》中,这说明我国人民早在2500年前就已经知道了幻方的排列规律。而在国外,公元130年,希腊人塞翁才第一次提起幻方。
我国不仅拥用幻方的发明权,而且是对幻方进行深入研究的国家。公元13世纪的数学家杨辉已经编制出3-10阶幻方,记载在他1275年写的《续古摘厅算法》一书中。在欧洲,直到574年,德国著名画家丢功才绘制出了完整的4阶幻方。
编制幻方不仅仅是数学游戏,特别直接的用处不了解。
不过在计算机技术飞速发展的今天,它已派上了用场,如数码编排、程序设计、实验设计、人工智能、组合分析以及工艺美术等领域均有应用。随着科学技术的不断发展,幻方的应用想必也会扩展。