1/2²<1/(1·2)=1/1-1/21/3²<1/(2·3)=1/2-1/3…1/n²<1/[n·(n+1)]=1/n-1/(n+1)所以:1/1²+1/2²+1/3²+...+1/n²<1/1²+1/(1·2)+1/(2·3)+1/(3·4)+…+1/[n·(n+1)]=1+(1-1/2)+(1/2-1/3)+(1/3-1/4)+…+[1/n-1/(n+1)]=1+1-1/(n+1)=2-1/(n+1)<2