用放缩法证明1⼀1^2+1⼀2^2+1⼀3^2+...+1⼀n^2<2(n∈N+) 要详细的解

2024-12-17 16:13:32
推荐回答(1个)
回答1:

1/2²<1/(1·2)=1/1-1/2
1/3²<1/(2·3)=1/2-1/3

1/n²<1/[n·(n+1)]=1/n-1/(n+1)
所以:
1/1²+1/2²+1/3²+...+1/n²<1/1²+1/(1·2)+1/(2·3)+1/(3·4)+…+1/[n·(n+1)]
=1+(1-1/2)+(1/2-1/3)+(1/3-1/4)+…+[1/n-1/(n+1)]
=1+1-1/(n+1)=2-1/(n+1)<2