其实积分点路和微分电路就是利用时间常数t=RC来控制输出的,一般积分电路中,RC电路的时间常数t远大于脉冲宽度,其输出信号电压与输入信号电压的积分成正比,故为积分电路,
微分电路中要求t=RC时间常数远小于脉冲宽度。通过改变电容的充放电的时间使得输入的矩形脉冲信号变成尖脉冲。
微分电路能够取出输出信号中突变的成分,即取出输入信号中的高频成分,去掉低频成分。而积分电路与之正好相反
积分电路:在上升沿没到来之前,输出为0V,当输入脉冲出现后,输入信号电压通过电阻对电容充电,由于时间常数比较大,所以在C上电压上升比较缓慢,按指数规律上升,由于时间常数大于脉冲宽度,所以对电容充电不久输入脉冲就跳变为0,对电容充电结束。同理,在低电平阶段,电容因为充电时间很多,所以放电时间也很短,然后高电平有来临,如此这样重复。
你按这样自己画个图加深下印象,因为是自己描述的,可能有些地方没有描述到
微分电路你可以结合时间常数远小于脉冲宽度来自行分析,有什么不明白的可以上我空间给我留言
这个输出波形,与微积分电路参数,方波频率,占空比有很大的关系;
因此,大致说其输出波形的变化规律,就是微积分的性质。
如:半周期对称的方波,其积分波形,则是两段斜线构成的正三角波,等等
前者输出周期冲击序列,后者输出三角波