解答:解:连接BD,
∵四边形ABCD是矩形,
∴BD=AC,∠B=90°,
∵AB=6,BC=8,
∴AC=
=10,
AB2+BC2
∵四边形EFGH为平行四边形,且EF∥AC,
∴EF∥AC∥GH,
∴△BEF∽△BAC,△DHG∽△DAC,
∴
=BE AB
①,EF AC
=GH AC
,DH AD
∴
=BE AB
,DH AD
∴EH∥BD,
∴EH∥BD∥FG,
∴
=AE AB
,EH BD
∴
=AE AB
②,EH AC
∴①+②得:
=BE+AE AB
,EF+EH AC
∵BE+AE=AB,
∴EF+EH=AC=10,
∴?EFGH的周长为:20.
故答案为:20.