由弧长的计算公式可得,弧长微分
ds=
dt
[x′(t)]2+[y′(t)]2
=
dt
(a(1?cost))2+(asint)2
=
dt
2a2(1?cost)
=
dt
4a2sin2
t 2
=2a|sin
|dt,t 2
故该摆线在0≤t≤2π部分的弧长为
L=
ds
∫
=
2a|sin
∫
|dtt 2
=
2asin
∫
dtt 2
=?4acos
t 2
|
=8a.
该弧段绕x轴旋转一周所得旋转曲面面积为:
S=
y
∫
dt
(x′(t))2+(y′(t))2
=2π
a(1?cost)2a|sin
∫
|dtt 2
=8πa2
(1?cos2
∫
)sint 2
dtt 2
=?16πa2(cos
?t 2
cos31 3
)t 2
|
=
a2.64π 3
由题意,L=S,即:
8a=
a2,64π 3
求解即得:a=
.3 8π