y=2sin(2x-π/3)
令sin(2x-π/3)=0
则2x-π/3=kπ,其中k∈z
此时,x=kπ/2+π/6
∴对称中心:(kπ/2+π/6,0),其中k∈z
令sin(2x-π/3)=±1
则2x-π/3=kπ-π/2,其中k∈z
此时,x=kπ/2-π/12
∴对称轴:x=kπ/2-π/12,其中k∈z
y-1/2=sin(2x-π/6)
则y-1/2=0,sin(2x-π/6)=0
2x-π/6=kπ
x=kπ/2+π/12
所以对称中心是(kπ+π/12,1/2)
对称轴则sin取最值
即sin=±1
2x-π/6=kπ+π/2
所以是x=kπ+π/3