预测值=aX(上一期的实际值)+(1-a)X(上一期的预测值)。
当时间数列无明显的趋势变化,可用一次指数平滑预测。
其预测公式为:yt+1'=ayt+(1-a)yt' 式中,yt+1'--t+1期的预测值,即本期(t期)的平滑值St ; yt--t期的实际值; yt'--t期的预测值,即上期的平滑值St-1 。
该公式又可以写作:yt+1'=yt'+a(yt- yt')。可见,下期预测值又是本期预测值与以a为折扣的本期实际值与预测值误差之和。
指数平滑法的计算中,关键是α的取值大小,但α的取值又容易受主观影响,因此合理确定α的取值方法十分重要,一般来说,如果数据波动较大,α值应取大一些,可以增加近期数据对预测结果的影响。如果数据波动平稳,α值应取小一些。
理论界一般认为有以下方法可供选择:
经验判断法。这种方法主要依赖于时间序列的发展趋势和预测者的经验做出判断。
1、当时间序列呈现较稳定的水平趋势时,应选较小的α值,一般可在0.05~0.20之间取值;
2、当时间序列有波动,但长期趋势变化不大时,可选稍大的α值,常在0.1~0.4之间取值;
3、当时间序列波动很大,长期趋势变化幅度较大,呈现明显且迅速的上升或下降趋势时,宜选择较大的α值,如可在0.6~0.8间选值,以使预测模型灵敏度高些,能迅速跟上数据的变化。
扩展资料:
二次指数平滑预测
二次指数平滑是对一次指数平滑的再平滑。它适用于具线性趋势的时间数列 。其预测公式为:
yt+m=(2+am/(1-a))yt'-(1+am/(1-a))yt=(2yt'-yt)+m(yt'-yt) a/(1-a)式中,yt= ayt-1'+(1-a)yt-1 显然,二次指数平滑是一直线方程,其截距为:(2yt'-yt),斜率为:(yt'-yt) a/(1-a),自变量为预测天数。
二次指数平滑基本公式 St=αSt+(1-α)St-1 Yt+T=at+btT at=2St-St bt=(α/1-α)(St-St).
St--第t期的一次指数平滑值;
St-1--第t期的二次指数平滑值;
α--平滑系数 ;
Yt+T--第t+T期预测值 ;
T--由t期向后推移期数。
参考资料来源:百度百科-一次指数平滑法
参考资料来源:百度百科-指数平滑法
预测值=aX(上一期的实际值)+(1-a)X(上一期的预测值)