数学分析中的典型问题与方法(裴礼文)第二版319页4.1.6 的解题思路

2024-11-25 07:26:37
推荐回答(3个)
回答1:

《数学分析中的典型问题与方法》(裴礼文)电子书网盘下载免费在线阅读

链接: https://pan.baidu.com/s/1RErAOREr1f4Y2uJjdbjdzQ

?pwd=acme 提取码: acme    

书名:数学分析中的典型问题与方法

作者:裴礼文

豆瓣评分:9.3

出版社:高等教育出版社

出版年份:1993-5

页数:844

内容简介:《数学分析中的典型问题与方法》共分220个条目,1200个问题,包括一元函数极限、连续、微分、积分、级数,多元函数极限、连续、微分、积分。

回答2:

f_0(x)>0可以推出f_n(x)>0(除原点外),f_n(x)连续且严格递增,所以不妨从f_1开始考虑。

假定f_n有极限且极限与积分可交换,先平方再求导可以解出f(x)=x/2,当然,到这里只能猜出答案,不能作为推理依据。

1. 考虑f_1(x)=a*x^b的情形,a>0, b>=0。利用递推关系可以得到f_n(x)=a_n*x^{b_n}中a_n和b_n的递推式,不难解出lim a_n=1/2, lim b_n=1,即对于a*x^b型的初值结论是成立的。
2. Riemann可积的函数有界,所以|f_0(x)|<=M,M也是a*x^b型的初值,所以limsup f_n(x) <= x/2
3. 寻找a*x^b型的下界比较困难,但是可以稍微变通一下
对于任何d>0(当然00,构造一个函数g_1(x):
在[0,d)上g_1(x)=0,在[d,1]上g_1(x)=u(x-d)/(1-d)
于是0<=g_1(x)把g_1(x)也代入f_n的迭代格式,生成序列g_n(x),由于g_1(x)具有a*(x-d)^b的形式,通过平移容易验证在[d,1]上g_n(x)->(x-d)/2,所以liminf f_n(x) >= (x-d)/2
由于d是任意的,所以liminf f_n(x) >= x/2

回答3:

两边平方的Fn(x)=∫fn(x)dx=f(n+1)2(x)再求导