解:|xy-2/3|+(y+1)^2=0
两个非负数之和为0,这两个非负数必为0。
即 xy-2/3=0且y+1=0
解得 x=-2/3,y=-1
则 x-2(xy+1/3 y^2) -(3/2 x -2/3 y^2)
=-2/3 -(2/3 + 1/3 * 1 ) -( -1 -2/3)
=-2/3-1+1+2/3
=0
|xy-2/3|+(y+1)²=0
两项均非负,和为0,那么它们均是0
∴xy-2/3=0,y+1=0
∴y=-1,x=-2/3
x-2(xy+1/3y²)-(3/2x-2/3y²)
=x-2xy-2/3y²-3/2x+2/3y²
=-1/2x-2xy
=-1/2*(-2/3)-2*2/3
=1/3-4/3
=-1