1.原始式子=(x+1)^2-(y-3)^2=0;所以有x+1=y-3或x+1=3-y,所以由题目可知x-y=-4.
2.原式=(2x-3)^2+(3y+5)^2+1=0;所以无论x,y为多少都是恒为正。
3.原式=22n+121,即=(2n+11)*11,所以无论n为何整数值,都行
1. 已知x²+2x-y²+6y-8=0,且x+y≠2,求x-y的值?
x²+2x-y²+6y-8=0
x²+2x+1-(y²-6y+9)=0
(x+1)²-(y-3)²=0
(x+1+y-3)(x+1-y+3)=0
(x+y-2)(x-y+4)=0
x+y-2=0 x+y=2
或x-y+4=0 x-y=-4
∵x+y≠2
∴x-y=-4
2. 求证:无论x﹑y为何值,4x²-12x+9y²+30y+35的值恒为正?
4x²-12x+9y²+30y+35
=4x²-12x+9+9y²+30y+25+1
=(2x-3)²+(3y+5)²+1
∵(2x-3)²≥0 (3y+5)²≥0
∴(2x-3)²+(3y+5)²+1≥1
4x²-12x+9y²+30y+35的值恒为正
∴3. 对于任何整数,﹙n+11﹚²-n²能被11整除吗?为什么?
∵,﹙n+11﹚²-n²
=(n+11-n)(n+11+n)
=11(2n+11)
1. x²+2x-y²+6y-8=0
x²+2x+1-(y²-6y+9)=0
(x+1)²-(y-3)²=0
(x+1+y-3)(x+1-y+3)=0
(x+y-2)(x-y+4)=0
x+y-2=0 x+y=2
或x-y+4=0 x-y=-4
∵x+y≠2
∴x-y=-4
2. 4x²-12x+9y²+30y+35
=4x²-12x+9+9y²+30y+25+1
=(2x-3)²+(3y+5)²+1
∵(2x-3)²≥0 (3y+5)²≥0
∴(2x-3)²+(3y+5)²+1≥1
4x²-12x+9y²+30y+35的值恒为正
3. ∵,﹙n+11﹚²-n²
=(n+11-n)(n+11+n)
=11(2n+11)
你好 对吗
需要做第二个吗