如图,作EH∥AD,交AC于H,∵点E是AB中点,∴EH/BC=AH/AC=AE/AB=1/2,∵AG:GC=1/5,∴AG/AC=1/6,∴AG/AH=1/3,∴AG/GH=1/2,由△AFG∽△EEG得AF/HE=AG/GH=1/2,∴AF/BC=1/4,又∵AD=BC,∴AF/AD=1/4,∴AF/FD=1/3