1*2+2*3+3*4+...n*(n+1)
=1(1+1)+2(2+1)+3(3+1)+···+n(n+1)
=1²+1+2²+2+3²+3+····+n²+n
=(1+2+3+····+n)+(1²+2²+3²+···n²)
=(1+n)n/2+n(n+1)(2n+1)/6
=n(n+1)/2[1+(2n+1)/3]
=n(n+1)(n+2)/3
注:此题应用的两个常用的求和公式为:
1+2+3+···+n=(1+n)n/2
1²+2²+3²+···n²=n(n+1)(2n+1)/6
1*2=1/3(1*2*3-0*1*2)
2*3=1/3(2*3*4-1*2*3).......
n*(n+1)= 1/3(n*(n+1)(n+2)-(n-1)n(n+1))
所以
1*2+2*3+3*4+...n*(n+1)=1/3n*(n+1)(n+2)
孩子1*2+2*3+3*4+4*5+...+10*11你不是刚问了吗,按我解得好做