令1+1/x=t(t≠1),则x=1/(t-1), 代入所给方程,即f(t)=1/(t-1)²-1,
将t换成x,f(x)=1/(x-1)²-1(x≠1)
定义域可能有问题,还望阁下考虑一二
令1+1/x=t 则x=1/(t-1)
代入f(1+1/x)=x²-1
f(t)=[1/(t-1)]^2 - 1
也即f(x)=[1/(x-1)]^2 - 1
由式可知,x≠1,f(x)=-x(x-2)/(x-1)/(x-1),
令t=1+1/x,解出x=1/(t-1)
f(t)=1/(t-1)²-1
再令x=t
f(x)=1/(x-1)²-1
f(1+1/x)=(-1/(1-1-1/x))²-1;
f(x)=(-1/(1-x))²-1=1/(1-x)²-1;