已知:a是一元二次方程X^2+3X-1=0的实数根,求代数式

图片中的第二题!
2024-12-29 03:22:32
推荐回答(3个)
回答1:

整理(a-3)/(3a²-6a)÷[a+2-5/(a-2)]
=(a-3)/3a(a-2)÷[(a+2)(a-2)/a-2-5/(a-2)]
=(a-3)/3a(a-2)÷[(a+2)(a-2)-5/(a-2)]
=(a-3)/3a(a-2)÷[(a²-9)/(a-2)]
=(a-3)/3a(a-2)*(a-2)/(a+3)(a-3)
=1/3a(a+3)
=1/3(a²+3a)
因为a是一元二次方程X^2+3X-1=0的实数根
所以a²+3a-1=0,
所以a²+3a=1,代人,得,
原式=1/3

回答2:

化简原式=(A-3)/(3A(A-2)) / (A^2-4-5)/(A-2)
=(A-3)/(3A(A-2))*(A-2)/(A^2-9)
=1/(3(A+3))
由原方程得:A=(-3+根号13)/2 或A= (-3-根号13)/2

把A=(-3+根号13)/2 代入1/(3(A+3))=1/3+根号13/9
把或A= (-3-根号13)/2代入1/(3(A+3))=1/3-根号13/9

回答3:

x=a代入方程:a²+3a-1=0
a²+3a=1

[(a-3)/(3a²-6a)]÷[a+2 -5/(a-2)]
=[(a-3)/3a(a-2)]/[(a²-9)/(a-2)]
=[(a-3)/3a]/[(a+3)(a-3)]
=1/[3a(a+3)]
=1/[3(a²+3a)]
=1/(3×1)
=1/3