极坐标变换:x=rcosa,y=rsina,0<=a<=2pi,0<=r<=R。
注意到Jacobian行列式为r,于是原积分
=∫ (从0到2pi)da ∫(从0到R)√(R^2-r^2)rdr
=2pi*【-(R^2-r^2)^(3/2)/3】|上限R下限0
=2pi*R^3/3。
∫∫√(R^2-x^2-y^2) dσ
=∫∫(R²-p²)pdpdθ 积分域为整个圆
=4∫∫√(R²-p²)pdpdθ 这儿为4分之1圆
=4∫(0,π/2)dθ∫(0,R)√R²-p²pdp
=-1/2*4∫(0,π/2)2/3(R²-p²)^(3/2)|(0,R)dθ
=-2*π/2*2/3*(-(R²)^(3/2))
=2/3πR^3