已知:在四边形ABCD中,BC>AB,AD=DC,BD平分∠ABC.求证∠BAD+∠BCD=180°

2024-12-12 10:16:00
推荐回答(2个)
回答1:

证明:
作DE⊥BA交BA的延长线于E,作DF⊥BC于F
∵BD平分∠ABC
∴DE=DF
又∵AD=DC、DE⊥BA、DF⊥BC
∴△ADE≌△CDF
∴∠DAE=∠BCD
∵∠BAD+∠DAE=180°
∴∠BAD+∠BCD=180°

希望我的回答对你有帮助,采纳吧O(∩_∩)O!

回答2:

解答:
在BC边取BE=BA,连接DE,
则易证:△BAD≌△BED﹙SAS﹚,
∴DA=DE,∠A=∠BED,
∴DE=DC,∴∠C=∠DEC,
而∠DEB+∠DEC=180°,
∴∠BAD+∠BCD=180°。