过C作CG⊥AC交AE延长线于G∵AE⊥BD于F,所以∠DBA=∠GAC(都与∠EAB互余)∵∠ABC=∠ACB=45∴AB=CA 又∵∠DAB=∠GCA=90°∴△DAB≌△GCA(角边角)∴∠ADB=∠CGA,AD=CG又∵AD=DC,所以CD=CG又∵∠GCE=∠DCE=45°,CE=CE∴△GCE≌△DCE(边角边)∴∠CGA=∠CDE∴∠ADB=∠CDE