问题,函数y=xcosx在(-∞,+∞)内是否有界?这个函数是否为x→+∞时的无穷大?为什么

2024-11-22 22:21:30
推荐回答(2个)
回答1:

x→+∞时,f(x)是无穷大的定义是:对于任意大的正数M,存在正数X,对于任意的x>X,恒有|f(x)|>M。
分析:x很大时,始终存在使得cosx=0的x,所以|f(x)|>M不可能恒成立。
把无穷大的定义否定,得到“不是无穷大”的定义:存在正数M,对于任意的正数X,存在x>X,但是|f(x)|≤M。
过程:
对于正数M=1,不管正数X多大,存在正整数n,使得nπ+π/2>X,但|f(nπ+π/2)|=0<1。所以f(x)=xcosx不是x→+∞时的无穷大。

--------
一般对于无界、无穷大可以使用函数极限与数列极限的关系来说明:如果存在数列Xn,使得f(Xn)是无穷大,则f(x)无界。如果存在数列yn,使得f(yn)的极限有限,则f(x)不是无穷大。

回答2:

因为cos(kπ+1/2π)始终为0,导致xcosx 当x趋向正无穷时会经常变为0,也就是函数不单调