1/(1+2)=2x(1/2-1/3)
1/(1+2+3)=2x(1/3-1/4)
1/(1+2+3+4)=2x(1/4-1/5)
……
1/(1+2+3+4+……+2013)=2x(1/2013-1/2014)
所以:
原式=2x(1/2-1/3+1/3-1/4+1/4-1/5+……+1/2011-1/2012+1/2013-1/2014)
=2x(1/2-1/2014)
=1-1/1007
=1006/1007
∵1/(1+2)=2x(1/2-1/3)
1/(1+2+3)=2x(1/3-1/4)
1/(1+2+3+4)=2x(1/4-1/5)
……
1/(1+2+3+4+……+2013)=2x(1/2013-1/2014)
∴ 1-(1/1+2的和+1/1+2+3的和+1/1+2+3+4的和+…+1/1+2+3+4+…+2013)
=1-[2/(2×3)+2/(3×4)+2/(5×6)+.........+2/(2013×2014)]
=1-2×[(1/2-1/3)+(1/3-1/4)+(1/4-1/5)+.........+(1/2013-1/2014)]
=1-2×(1/2-1/2014)
=1-1+1/1007
=1/1007
1+2+3+…n=n(n+1)/2,1/(n(n+1)/2)=2(1/n-1/(n+1)) 原式=1-2(1/2-1/3+1/3-1/4+1/4-1/5…+1/2013-1/2014)=1-2(1/2-1/2014)=1-1+1/1007=1/1007