1、实验方法
(1) Fe3O4的煤油基磁性流体的制备
本实验中使用分析纯的二氯化铁、三氯化铁和氨水(NH3含量25%),按照化学共沉淀法制备Fe3O4的磁性颗粒,其化学反应方程式为
2FeCl3·6H2O+FeCl2·4H2O+8NH3·H2O= Fe3O4+8NH4Cl+24H2O (1)
制备磁性流体基液采用普通煤油,而表面活化剂选择为油酸.实验整个工艺流程分为溶解、过滤、反应、加热、分离等几个阶段,最后得到乌黑发亮的Fe3O4煤油基磁性流体.
溶解过程是用天平按质量比0.37:1称取FeCl2·4H2O 蓝绿色晶体和FeCl3·6H2O黄色晶体,再按照FeCl2·4H2O和FeCl3·6H2O的总量与水的质量比0.68:1溶解于水,放于烧杯中,用玻璃棒搅拌使其溶解,配制成混合溶液.为了加快溶解速度,可将盛溶液的烧杯置于热水浴锅中,待充分溶解后再置于冷水中冷却.过滤过程是将冷却后的FeCl2和FeCl3的混和溶液进行过滤操作,以除去杂质,在过滤后将得到棕色的油状溶液.反应过程是在经过过滤的FeCl2和FeCl3的混合液中用胶帽滴管逐滴加入氨水,使其发生如式(1)的化学反应.加入氨水后立即观察到有蓝黑色的Fe3O4胶粒体生成,应同时用玻璃棒或用搅拌器搅拌,使之分散均匀而不致凝聚形成大颗粒沉淀.直到不再看到有Fe3O4生成时,就说明氨水已过量,停止滴加氨水,此时得到的是蓝黑色液体.加热过程是在上述反应生成的蓝黑色溶液中加入活化剂油酸和基液煤油,搅拌使之混合均匀,将得到黑色发亮的液体.将其放置于80℃以上水浴中加热,以除去过量氨水. 加热过程中要用玻璃棒搅拌以加快除去氨水速度. 为检验氨水是否除掉,可用PH试纸放于烧杯口看其颜色变化,如显中性则证明氨水已基本除去.除氨过程中之所以要用水浴加热而不直接加热是为了防止水和煤油蒸发,除去氨水的目的则是为了使水和煤油分层.分离过程是把上述溶液转移至量筒中或试管中,静止十几分钟后,可观察到溶液分为两层. 上层乌黑发亮的胶体溶液就是Fe3O4的煤油基磁性流体,它由Fe3O4磁性颗粒、活化剂油酸和基液煤油组成. 下层无色(或略有些颜色)透明的则是水和未反应完的少量FeCl2或FeCl3的水溶液. 用吸管吸取上层黑色的胶体溶液,就得到了想要的Fe3O4的煤油基磁性流体. 如果经过加热后的溶液静止十几分钟后不发生分层现象,则说明仍有氨水未除去,可将其再倒回烧杯中继续加热.
(2) Fe3O4煤油基磁性流体的检测
制得的磁性流体样品必须进行磁性能的检测说明其磁性.Fe3O4煤油基磁性流体稳定性的测定,采用最简单的方法,是把制备的样品靠近感到有明显吸力作用的磁铁旁,看是否具有磁性.
2、实验原理
将二价铁盐(FeCl2·4H2O) 和三价铁盐(FeCl3·6H2O) 按一定比例混合,加入沉淀剂(N H3 ·H2O) ,搅拌,反应一段时间即得到纳米Fe3O4 粒子,反应式为:
Fe2 + + 2Fe3 + + 8N H3 ·H2O = Fe3O4 ↓+ 8N H+4 + 4H2O
由反应式可看出,反应的理论摩尔比为Fe2 + ∶Fe3+ = 1∶2 ,但由于二价铁离子容易氧化成三价铁离子,所以实际反应中二价铁离子应适当过量. 三、试剂及仪器
试剂和仪器:氨水,FeCl3·6H2O, FeCl2·4H2O,油酸,煤油,蒸馏水,烧杯,电动搅拌器
2、
Fe3O4的煤油基磁性流体的制备
本实验中使用分析纯的二氯化铁、三氯化铁和氨水(NH3含量25%),按照化学共沉淀法制备Fe3O4的磁性颗粒,其化学反应方程式为
2FeCl3·6H2O+FeCl2·4H2O+8NH3·H2O= Fe3O4+8NH4Cl+24H2O (1)
制备磁性流体基液采用普通煤油,而表面活化剂选择为油酸.实验整个工艺流程分为溶解、过滤、反应、加热、分离等几个阶段,最后得到乌黑发亮的Fe3O4煤油基磁性流体.
溶解过程是用天平按质量比0.37:1称取FeCl2·4H2O 蓝绿色晶体和FeCl3·6H2O黄色晶体,再按照FeCl2·4H2O和FeCl3·6H2O的总量与水的质量比0.68:1溶解于水,放于烧杯中,用玻璃棒搅拌使其溶解,配制成混合溶液.为了加快溶解速度,可将盛溶液的烧杯置于热水浴锅中,待充分溶解后再置于冷水中冷却.过滤过程是将冷却后的FeCl2和FeCl3的混和溶液进行过滤操作,以除去杂质,在过滤后将得到棕色的油状溶液.反应过程是在经过过滤的FeCl2和FeCl3的混合液中用胶帽滴管逐滴加入氨水,使其发生如式(1)的化学反应.加入氨水后立即观察到有蓝黑色的Fe3O4胶粒体生成,应同时用玻璃棒或用搅拌器搅拌,使之分散均匀而不致凝聚形成大颗粒沉淀.直到不再看到有Fe3O4生成时,就说明氨水已过量,停止滴加氨水,此时得到的是蓝黑色液体.加热过程是在上述反应生成的蓝黑色溶液中加入活化剂油酸和基液煤油,搅拌使之混合均匀,将得到黑色发亮的液体.将其放置于80℃以上水浴中加热,以除去过量氨水. 加热过程中要用玻璃棒搅拌以加快除去氨水速度. 为检验氨水是否除掉,可用PH试纸放于烧杯口看其颜色变化,如显中性则证明氨水已基本除去.除氨过程中之所以要用水浴加热而不直接加热是为了防止水和煤油蒸发,除去氨水的目的则是为了使水和煤油分层.分离过程是把上述溶液转移至量筒中或试管中,静止十几分钟后,可观察到溶液分为两层. 上层乌黑发亮的胶体溶液就是Fe3O4的煤油基磁性流体,它由Fe3O4磁性颗粒、活化剂油酸和基液煤油组成. 下层无色(或略有些颜色)透明的则是水和未反应完的少量FeCl2或FeCl3的水溶液. 用吸管吸取上层黑色的胶体溶液,就得到了想要的Fe3O4的煤油基磁性流体. 如果经过加热后的溶液静止十几分钟后不发生分层现象,则说明仍有氨水未除去,可将其再倒回烧杯中继续加热
附:
四氧化三铁的理化性质
物理性质
晶状黑色固体,不溶于水,有磁性,固体具有优良的导电性。
化学性质
铁丝在纯氧里燃烧生成四氧化三铁;(现象:火星四射,放热,生成黑色固体--四氧化三铁。实验室里做实验注意实验时要在瓶底铺一层细沙或水,原因是:防止溅落的熔化物炸裂瓶底!);锻工砧子周围散落的蓝灰色碎屑主要是四氧化三铁;铁跟高温的水蒸汽发生置换反应生成四氧化三铁和氢气;天然磁铁矿的主要成分是四氧化三铁的晶体。四氧化三铁是一种重要的常见铁的化合物。在空气中稳定存在。
在Fe3O4里,铁显两种价态,一个亚铁离子显+2价,两个铁离子显+3价,所以说四氧化三铁可看成是由FeO与Fe2O3组成的化合物,可表示为FeO·Fe2O3,而不能说是FeO与Fe2O3组成的混合物,它属于纯净物。
常见化学反应
(1)在高温下,易氧化成氧化铁。4Fe3O4+O2=高温=6Fe2O3
(2)在高温下可与还原剂CO、Al,C等反应。3Fe3O4+8Al=4Al2O3+9Fe Fe3O4+4CO=高温=3Fe+4CO2
(3)在加热条件下可与还原剂氢气发生反应。Fe3O4+4H2=加热=3Fe+4H2O
(4)二氧化氮和灼热的铁粉反应生成四氧化三铁和氮气2NO2+3Fe=高温=Fe3O4+N2
(5)铁在氧气中燃烧生成四氧化三铁 2O2+3Fe=点燃=Fe3O4
(6)水蒸气和炽热的铁反应生成四氧化三铁 4H2O+3Fe=高温=Fe3O4+4H2
(7)和酸反应 Fe3O4+8HCl=2FeCl3+FeCl2+4H2O
四氧化三铁有磁性,可制作磁流体,而FeO和Fe2O3没有这样的性质。
磁流体实际上是四氧化三铁以很小的颗粒分散在特定的溶剂中,可以是聚乙二醇和水的混合溶剂。
若将现成的四氧化三铁打碎,分散到溶剂中是难以做到均匀的。所以一般是通过反应来制备。
反应物是亚铁盐,如FeCl2,氧化剂一般用H2O2,便于控制,环境一般用碱性环境,碱性环境下的H2O2的氧化性不至于太强,也便于控制。注意用N2保护,避免O2接触,因为过程中生成的Fe(OH)2一接触到O2就会被氧化成Fe(OH)3。
实验中H2O2的用量要严格控制,只能让部分Fe被氧化到+3价。
我不明白你说的“用量都缩减了150倍”是什么意思,难道0.179mol/L的FeCl2溶液你只用了1mL?
但很明显,你的实验中Fe都被氧化成Fe2O3了,所以失败了,可能是H2O2的用量多了,可能是有O2与反应体系接触了。
理想的四氧化三铁磁流是黑色的液体,实际上属于胶体分散系了。
若略显棕色,意味者生成部分Fe2O3,只要不很多,也不影响磁流体的性质。
而略显棕色是为了便于判断大部分的Fe转化为了Fe3O4,因为FeO也是黑色的,若只是黑色,其实难以判断是否发生了转换。