求解定积分∫(上限根号3,下限为1)方程是dx⼀x的平方乘以根号下1+(x的平方)

因为不会打符号,有点乱,请见谅,需要过程,谢谢
2024-12-19 06:23:05
推荐回答(1个)
回答1:

∫(1,√3) dx/(x^2√(1+x^2))
换元,x=tant
=∫(π/4,π/3) d(tant)/(tan^2t√(1+tan^2t))
=∫(π/4,π/3) (1/cos^2t)/(tan^2t*(1/cost)) dt
=∫(π/4,π/3) cost/sin^2t dt
=∫(π/4,π/3) sin^(-2)t d(sint)
=-sin^(-1)t | (π/4,π/3)
=2-2√3/3
有不懂欢迎追问