已知tan2θ=3⼀4(π⼀2<θ<π) 求(2cos^2(θ⼀2)+sinθ-1)⼀(根号2* cos(θ+π⼀4))

2024-12-29 03:33:54
推荐回答(1个)
回答1:

tan2θ=2tanθ/(1-tan^2θ)=3/4
3tan^2θ+8tanθ-3=0
tanθ=-3或tanθ=1/3 π/2<θ<π tanθ<0
所以 tanθ=-3
(2cos^2(θ/2)+sinθ-1)/(根号2* cos(θ+π/4))
=(cosθ+sinθ)/(cosθ-sinθ) 分子分母同时除以 cosθ
=(1+tanθ)/(1-tanθ) tanθ=-3代入
=(1-3)(1+3)
=-1/2