证明:∵正方形ABCD∴AB=AD,∠D=∠ABF=∠BAD=90∴∠BAE+∠DAE=90∵AE⊥AF∴∠EAF=90∴∠BAE+∠BAF=90∴∠BAF=∠DAE∴△ADE≌△ABF (ASA)∴DE=BF
因EA垂直AF所以角FAE=角BAE=90度所以角FAE-角BAE=角BAE-角BAE所以角FAB=角EAD在Rt三角形AFB和Rt三角形ADE中,角ABF=角D=90度, AB=AD所以三角形ABF全等于三角形ADE所以DE=BF