1/x-1/y=3
通分有y-x/xy=3 所以y-x=3xy
(3x-5xy-3y)/(x-2xy-y)=[3(x-y)-5xy]/[(x-y)-2xy]=(-9xy-5xy)/(-3xy-2xy)
=(-14xy)/(-5xy)=14/5
解:1/x-1/y=3
y-x=3xy
﹙3x-5xy-3y﹚/﹙x-2xy-y﹚
=[3﹙x-y﹚-5xy]/[﹙x-y﹚-2xy]
=﹙﹣9xy-5xy﹚/﹙﹣3xy-2xy﹚
=﹙﹣14xy﹚/﹙﹣5xy﹚
=14/5.
由1/x-1/y=3可知,x,y≠0
(3x-5xy-3y)/(x-2xy-y)上下同除以xy
得到
(3/y-5-3/x)/(1/y-2-1/x)
=[3(1/y-1/x)-5]/[(1/y-1/x)-2]
=(-9-5)/(-3-2)
=14/5