解:a²-3a+1=0,则a不为0.
方程两边同除以a,得:a-3+1/a=0, a+1/a=3.
∴(a+1/a)²=9,a²+1/a²+2=9,a²+1/a²=7.
故a²/(a⁴+a²+1)
=1/(a²+1+1/a²) ----------(即上式的分子与分母同除以了a².)
=1/(7+1)
=1/8.
解:a方-3a+1=0, 那么,
(a^2+1)^2=9a^2
a^4+2a^2+1=9a^2
a^4+1=7a^2
则:(a方)/(a的四次方+a方+1)
=a^2/(a^4+1+a^2)
=a^2/(7a^2+a^2)
=1/8 .