以下是我个人总结的一点经验,你可以借鉴一下!
一、圆锥曲线题型的主要特点:一般来说解题思路比较简单,但运算量较为繁琐。因此要想攻破这类题型必须加强以下几个方面的能力:一是掌握解题基本的方法和常用公式;二是提高元算能力和总结一些简便运算的技巧;三是理解和运用主要的几大数学思想(即数形结合思想、函数思想、分类讨论思想、转化思想和整体替换思想);四是掌握一些常用的设点技巧(这是减少元算量的关键)。
二、高考试题中该类题型的分布位置:一般放在第四道大题的位置。它一般分为三个小题:第一小题一般是求点的轨迹(4分);第二和第三小题是其它类型的题(如求定点、定直线、定距离、最值等问题),分别占5分。(设直线的方程是要注意斜率是否存在)
三、圆锥曲线的重点理论知识:(1)求动点轨迹的的基本方法:1、定义法(也称为直接法或几何法):根据圆锥曲线的定义求即可(注意:此法应优先考虑)2、间接法:先设出动点的坐标,在根据已知条件寻找几个等量关系,再化简即可;3、交轨法:转化为其它曲线的交点轨迹;4、参数法:先用参数表示动点坐标的表达式,再消去参数即可。(2)椭圆的第二定义:若一动点到定点的距离与到定直线的距离的比小于1,则该动点的轨迹为椭圆。(该比值其实就是离心率,该定点为焦点,该直线为准线)(双曲线的第二定义与此类似,只需把比值改为大于1即可)(3)椭圆的焦半径公式:AF1=a-ex,AF2=a+ex;椭圆的焦三角形的面积公式:SpF1F2=b^2*tan@/2;双曲线的焦半径公式:AF1=ex-a,AF2=ex+a;双曲线的焦三角形的面积公式:SPF1F2=b^2/tan@/2。(其中A为椭圆或双曲线上的点,x为A点的横坐标,e为离心率,@为F1pF2的角度)(4)若过抛物线y^2=2px的焦点的直线与抛物线交于A和B两点,设A(x1,y1).B(x2,y2),则有x1*x2=p^2/4,y1*y2=-p^2。(以上的结论最好自行推导一下)(5)当椭圆的焦三角形pF1F2的顶点p与短轴的端点重合时,角F1pF2的角度最大。(6)解圆锥曲线问题时常用的几个重要公式(务必要理解并牢记它,这是不会做这类题也可以拿到分的关键):1、韦达定理:x1+x2=-b/a,x1*x2=c/a
2、弦长公式:d=(1+k^2)*((x1+x2)^2-4x1x2)的值的算术平方根
3、中点弦公式(其作用主要是建立中点的坐标与直线斜率的关系):1、直线与椭圆(x^2/a^2+y^2/b^2=1)相交则k=(y1-y2)/(x1-x2)=-b^2*x0/(a^2*y0)
2、直线与双曲线(x^2/a^2-y^2/b^2=1)相交则k=b^2*x0/(a^2*y0) 3、直线与抛物线(y^2=2px)相交则k=p/y0
(其中A(x1,y1)和B(x2,y2)为两曲线的交点,而(x0,y0)为A和B的中点,k为直线的斜率) 圆锥曲线的题型大致可以分为以下几类:1、定点问题
2、定直线问题 3、最大最小值问题 4、定长或定距离问题 5、参数范围问题 6、与向量相结合的题型
(至于这几种题型的具体解题方法先让你自己通过练习大量的题来进行归纳总结,暂时不直接给出给你,因为只有通过你自己的思考再总结出来的东西理解才更加深刻,运用才更自如)(当然圆锥曲线的其它题型与方法还有很多,要靠你自己去挖掘,这里不便给出,也不可能给出,因为数学的题型是千变万化的,但也是非常有规律可寻的)
下面留几道题给你做练习
1理解定义,
2掌握一些常用的方法,如点差法
3方程联立和韦达定理,大题几乎必用
这个地方学起来的确很难,一道题要花几十分钟很正常,计算量大但思路比较死
很遗憾。。。主要还是靠算。算多了就快了