1/1×2+2/1×2×3+3/1×2×3×4+…+8/1×2×…×9
=1/1×2+2/1×2×3+3/1×2×3×4+…+7/(1×2×...×8)+1/(1×2×...×8)-1/(2×3×..×9)
=1/(1×2)+2/(1×2×3)+...+6/(1×2×3×...×7)+1/(1×2×...×7)-1/(2×3×...×9)
=.....
=1/(1×2)+2/(1×2×3)+1/(1×2×3)-1/(2×3×...×9)
=1/2+1/2-1/(2×3×...×9)
=1-1/362880
=362879/362880
1/1×2 =2/1×2 -1/1×2
2/1×2×3=3/1×2×3 -1/1×2×3=1/1×2 -1/1×2×3
同理 原式=(1/1×2×3×...×8)+···+(1/1×2)+(1/1)
-(1/1×2×···×9)-(1/1×2×···×8)-···-﹙1/1×2﹚
=1-(1/1×2×···×9)
剩下的就不用算了吧
0