=1/2×(1-1/3+1/3-1/5+1/5-1/7+……+1/2007-1/2009)=1/2×(1-1/2009)=1004/2009
1/[n(n+2)]=1/2[1/n-1/(n+2)]原式=1/2x(1/3-1/5)+1/2x(1/5-1/7)+...+1/2x(1/2007-1/2009) =1/2x(1/3-1/5+1/5-1/7+...+1/2007-1/2009) =1/2x(1/3-1/2009) =1003/6027