a(n+1)=an+1/n-1/(n+1)a(n+1)+1/(n+1)=an+1/n设bn=an+1/n则:b(n+1)=bnb1=a1+1/1=2所以:数列bn为常数列bn=2所以an+1/n=2an=2-1/n
An=2-1/n A(n+1)-An=1/n(n+1)=1/n-1/n+1A2-A1=1-1/2A3-A2=1/2-1/3.............An-An-1=1/(n-1)-1/n累加An-A1=1-1/n